Atomic Force Microscopy of Protein–Protein Interactions

  • Xiaohui Zhang
  • Felix Rico
  • Amy J. Xu
  • Vincent T. Moy


Since its invention in 1986, the atomic force microscope (AFM) has emerged as a flexible and powerful tool for exploring a variety of biological processes, including cell adhesion, protein folding, and protein–protein interactions. This review focuses on the application of the AFM to studies of protein–protein interactions. It describes the commonly used methodologies and reviews the theoretical framework used to analyze single-molecule protein–protein unbinding measurements. Finally, the chapter summarizes recent progress in the field and shows that the AFM provides an excellent tool for probing interactions on the cell surface and for understanding the energy landscapes that govern the dynamics of protein interactions.


Atomic Force Microscope Energy Landscape Atomic Force Microscope Measurement Atomic Force Microscope Cantilever Outer Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful for support by the National Institutes of Health (GM55611 to VTM), the American Heart Association (0215139B to XZ), the Fulbright-Generalitat de Catalunya postdoctoral fellowship (to FR) and the Harvard Medical School Medical Scientist Training Program fellowship (to AJX)


  1. 1.
    Wennmalm, S., and S. M. Simon. 2007. Studying individual events in biology. Annual Review of Biochemistry 76:419–446.CrossRefGoogle Scholar
  2. 2.
    Greenleaf, W. J., M. T. Woodside, and S. M. Block. 2007. High-resolution, single-molecule measurements of biomolecular motion. Annual Review of Biophysics and Biomolecular Structure 36:171–190.CrossRefGoogle Scholar
  3. 3.
    Binnig, G., C. F. Quate, and C. Gerber. 1986. Atomic force microscope. Physical Review Letters 56:930–933.ADSCrossRefGoogle Scholar
  4. 4.
    Horber, J. K., and M. J. Miles. 2003. Scanning probe evolution in biology. Science 302:1002–1005.ADSCrossRefGoogle Scholar
  5. 5.
    Lodish, H. F., A. Berk, P. Matsudaira, C. Kaiser, M. Krieger, M. Scott, L. Zipursky, and J. E. Darnell. 2004. Molecular Cell Biology, 5th ed. Scientific American Press, N.Y.Google Scholar
  6. 6.
    Barkai, E., Y. J. Jung, and R. Silbey. 2004. Theory of single-molecule spectroscopy: Beyond the ensemble average. Annual Review of Physical Chemistry 55:457–507.ADSCrossRefGoogle Scholar
  7. 7.
    Bustamante, C., J. C. Macosko, and G. J. L. Wuite. 2000. Grabbing the cat by the tail: Manipulating molecules one by one. Nature Reviews Molecular Cell Biology 1:130–136.CrossRefGoogle Scholar
  8. 8.
    Orsello, C. E., D. A. Lauffenburger, and D. A. Hammer. 2001. Molecular properties in cell adhesion: A physical and engineering perspective. Trends in Biotechnology 19:310–316.CrossRefGoogle Scholar
  9. 9.
    Bustamante, C., Y. R. Chemla, N. R. Forde, and D. Izhaky. 2004. Mechanical processes in biochemistry. Annual Review of Biochemistry 73:705–748.CrossRefGoogle Scholar
  10. 10.
    Sader, J. E., I. Larson, P. Mulvaney, and L. R. White. 1995. Method for the calibration of atomic-force microscope cantilevers. Review of Scientific Instruments 66:3789–3798.ADSCrossRefGoogle Scholar
  11. 11.
    Senden, T. J., and W. A. Ducker. 1994. Experimental-determination of spring constants in atomic-force microscopy. Langmuir 10:1003–1004.CrossRefGoogle Scholar
  12. 12.
    Hutter, J. L., and J. Bechhoefer. 1993. Calibration of atomic-force microscope tips. Review of Scientific Instruments 64:1868–1873.ADSCrossRefGoogle Scholar
  13. 13.
    Florin, E. L., V. T. Moy, and H. E. Gaub. 1994. Adhesion forces between individual ligand-receptor pairs. Science 264:415–417.ADSCrossRefGoogle Scholar
  14. 14.
    Alcaraz, J., L. Buscemi, M. Puig-de-Morales, J. Colchero, A. Baro, and D. Navajas. 2002. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18:716–721.CrossRefGoogle Scholar
  15. 15.
    Janovjak, H., J. Struckmeier, and D. J. Muller. 2005. Hydrodynamic effects in fast AFM single-molecule force measurements. European Biophysics Journal with Biophysics Letters 34:91–96.CrossRefGoogle Scholar
  16. 16.
    Lee, G. U., D. A. Kidwell, and R. J. Colton. 1994. Sensing discrete streptavidin–biotin interactions with AFM. Langmuir 10:354–361.CrossRefGoogle Scholar
  17. 17.
    Hinterdorfer, P. 2002. Molecular recognition studies using the atomic force microscope. Methods in Cell Biology 68:115–139.CrossRefGoogle Scholar
  18. 18.
    Bell, G. I. 1978. Models for the specific adhesion of cells to cells. Science 200:618–627.ADSCrossRefGoogle Scholar
  19. 19.
    Evans, E., and K. Ritchie. 1997. Dynamic strength of molecular adhesion bonds. Biophysical Journal 72:1541–1555.ADSCrossRefGoogle Scholar
  20. 20.
    Dudko, O. K., G. Hummer, and A. Szabo. 2006. Intrinsic rates and activation free energies from single-molecule pulling experiments. Physical Review Letters 96:108101.Google Scholar
  21. 21.
    Friddle, R. W. 2008. Unified model of dynamic forced barrier crossing in single molecules. Physical Review Letters 100:138302.Google Scholar
  22. 22.
    Husson, J., and F. Pincet. 2008. Analyzing single-bond experiments: Influence of the shape of the energy landscape and universal law between the width, depth, and force spectrum of the bond. Physical Review E 77:026108.Google Scholar
  23. 23.
    Evans, E. A., and D. A. Calderwood. 2007. Forces and bond dynamics in cell adhesion. Science 316:1148–1153.ADSCrossRefGoogle Scholar
  24. 24.
    Evans, E., A. Leung, D. Hammer, and S. Simon. 2001. Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proceedings of the National Academy of Sciences of the United States of America 98:3784–3789.ADSCrossRefGoogle Scholar
  25. 25.
    Merkel, R., P. Nassoy, A. Leung, K. Ritchie, and E. Evans. 1999. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53.ADSCrossRefGoogle Scholar
  26. 26.
    Zhang, X., E. Wojcikiewicz, and V. T. Moy. 2002. Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophysical Journal 83:2270–2279.ADSCrossRefGoogle Scholar
  27. 27.
    Li, F., S. D. Redick, H. P. Erickson, and V. T. Moy. 2003. Force measurements of the alpha(5)beta(1) integrin–fibronectin interaction. Biophysical Journal 84:1252–1262.ADSCrossRefGoogle Scholar
  28. 28.
    Zhang, X., D. F. Bogorin, and V. T. Moy. 2004. Molecular basis of the dynamic strength of the sialyl Lewis X–selectin interaction. Chemphyschem 5:175–182.CrossRefGoogle Scholar
  29. 29.
    Yersin, A., T. Osada, and A. Ikai. 2008. Exploring transferrin-receptor interactions at the single-molecule level. Biophysical Journal 94:230–240.ADSCrossRefGoogle Scholar
  30. 30.
    Nevo, R., C. Stroh, F. Kienberger, D. Kaftan, V. Brumfeld, M. Elbaum, Z. Reich, and P. Hinterdorfer. 2003. A molecular switch between alternative conformational states in the complex of Ran and importin beta1. Nature Structural Biology 10:553–557.CrossRefGoogle Scholar
  31. 31.
    Lehenkari, P. P., and M. A. Horton. 1999. Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochemical and Biophysical Research Communications 259:645–650.CrossRefGoogle Scholar
  32. 32.
    Chen, A., and V. T. Moy. 2000. Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophysical Journal 78:2814–2820.ADSCrossRefGoogle Scholar
  33. 33.
    Kienberger, F., A. Ebner, H. J. Gruber, and P. Hinterdorfer. 2006. Molecular recognition imaging and force spectroscopy of single biomolecules. Accounts of Chemical Research 39:29–36.CrossRefGoogle Scholar
  34. 34.
    Willemsen, O. H., M. M. Snel, K. O. van der Werf, B. G. de Grooth, J. Greve, P. Hinterdorfer, H. J. Gruber, H. Schindler, Y. van Kooyk, and C. G. Figdor. 1998. Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. Biophysical Journal 75:2220–2228.ADSCrossRefGoogle Scholar
  35. 35.
    Grandbois, M., W. Dettmann, M. Benoit, and H. E. Gaub. 2000. Affinity imaging of red blood cells using an atomic force microscope. Journal of Histochemistry and Cytochemistry 48:719–724.CrossRefGoogle Scholar
  36. 36.
    Dufrene, Y. F. 2008. AFM for nanoscale microbe analysis. Analyst 133:297–301.ADSCrossRefGoogle Scholar
  37. 37.
    Benoit, M., D. Gabriel, G. Gerisch, and H. E. Gaub. 2000. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biology 2:313–317.CrossRefGoogle Scholar
  38. 38.
    Razatos, A., Y. L. Ong, M. M. Sharma, and G. Georgiou. 1998. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 95:11059–11064.ADSCrossRefGoogle Scholar
  39. 39.
    Wojcikiewicz, E. P., X. Zhang, A. Chen, and V. T. Moy. 2003. Contributions of molecular binding events and cellular compliance to the modulation of leukocyte adhesion. Journal of Cell Science 116:2531–2539.CrossRefGoogle Scholar
  40. 40.
    Wojcikiewicz, E. P., M. H. Abdulreda, X. H. Zhang, and V. T. Moy. 2006. Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2. Biomacromolecules 7:3188–3195.CrossRefGoogle Scholar
  41. 41.
    Krieg, M., Y. Arboleda-Estudillo, P. H. Puech, J. Kafer, F. Graner, D. J. Muller, and C. P. Heisenberg. 2008. Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biology 10:429–U122.CrossRefGoogle Scholar
  42. 42.
    Puech, P. H., K. Poole, D. Knebel, and D. J. Muller. 2006. A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy 106:637–644.CrossRefGoogle Scholar
  43. 43.
    Ansari, A., J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. T. Iben, T. B. Sauke, E. Shyamsunder, and R. D. Young. 1985. Protein states and protein quakes. Proceedings of the National Academy of Sciences of the United States of America 82:5000–5004.ADSCrossRefGoogle Scholar
  44. 44.
    Frauenfelder, H., S. G. Sligar, and P. G. Wolynes. 1991. The energy landscapes and motions of proteins. Science 254:1598–1603.ADSCrossRefGoogle Scholar
  45. 45.
    Hyeon, C., and D. Thirumalai. 2007. Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments. Journal of Physics—Condensed Matter 19:113101.Google Scholar
  46. 46.
    Nevo, R., V. Brumfeld, R. Kapon, P. Hinterdorfer, and Z. Reich. 2005. Direct measurement of protein energy landscape roughness. EMBO Reports 6:482–486.CrossRefGoogle Scholar
  47. 47.
    Rico, F., and V. T. Moy. 2007. Energy landscape roughness of the streptavidin-biotin interaction. Journal of Molecular Recognition 20:495–501.CrossRefGoogle Scholar
  48. 48.
    Janovjak, H., H. Knaus, and D. J. Muller. 2007. Transmembrane helices have rough energy surfaces. Journal of the American Chemical Society 129:246–247.CrossRefGoogle Scholar
  49. 49.
    Schumakovitch, I., W. Grange, T. Strunz, P. Bertoncini, H. J. Guntherodt, and M. Hegner. 2002. Temperature dependence of unbinding forces between complementary DNA strands. Biophysical Journal 82:517–521.ADSCrossRefGoogle Scholar
  50. 50.
    Brujic, J., R. I. Hermans, K. A. Walther, and J. M. Fernandez. 2006. Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin. Nature Physics 2:282–286.ADSCrossRefGoogle Scholar
  51. 51.
    Walhout, A. J. M., and M. Vidal. 2001. Protein interaction maps for model organisms. Nature Reviews Molecular Cell Biology 2:55–62.CrossRefGoogle Scholar
  52. 52.
    Wells, J. A., and C. L. McClendon. 2007. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009.ADSCrossRefGoogle Scholar
  53. 53.
    Yu, J. P., Y. X. Jiang, X. Y. Ma, Y. Lin, and X. H. Fang. 2007. Energy landscape of aptamer/protein complexes studied by single-molecule force spectroscopy. Chemistry—An Asian Journal 2:284–289.CrossRefGoogle Scholar
  54. 54.
    Bonanni, B., A. S. M. Kamruzzahan, A. R. Bizzarri, C. Rankl, H. J. Gruber, P. Hinterdorfer, and S. Cannistraro. 2005. Single molecule recognition between cytochrome C 551 and gold-immobilized azurin by force spectroscopy. Biophysical Journal 89:2783–2791.ADSCrossRefGoogle Scholar
  55. 55.
    Neuert, G., C. Albrecht, E. Pamir, and H. E. Gaub. 2006. Dynamic force spectroscopy of the digoxigenin–antibody complex. EBS Letters 580:505–509.Google Scholar
  56. 56.
    Sletmoen, M., G. Skjak-Braek, and B. T. Stokke. 2004. Single-molecular pair unbinding studies of mannuronan C-5 epimerase AlgE4 and its polymer substrate. Biomacromolecules 5:1288–1295.CrossRefGoogle Scholar
  57. 57.
    Taranta, M., A. R. Bizzarri, and S. Cannistraro. 2008. Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy. Journal of Molecular Recognition 21:63–70.CrossRefGoogle Scholar
  58. 58.
    Maki, T., S. Kidoaki, K. Usui, H. Suzuki, M. Ito, F. Ito, Y. Hayashizaki, and T. Matsuda. 2007. Dynamic force spectroscopy of the specific interaction between the PDZ domain and its recognition peptides. Langmuir 23:2668–2673.CrossRefGoogle Scholar
  59. 59.
    Dettmann, W., M. Grandbois, S. Andre, M. Benoit, A. K. Wehle, H. Kaltner, H. J. Gabius, and H. E. Gaub. 2000. Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy. Archives of Biochemistry and Biophysics 383:157–170.CrossRefGoogle Scholar
  60. 60.
    Fritz, J., A. G. Katopodis, F. Kolbinger, and D. Anselmetti. 1998. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 95:12283–12288.ADSCrossRefGoogle Scholar
  61. 61.
    Hanley, W., O. McCarty, S. Jadhav, Y. Tseng, D. Wirtz, and K. Konstantopoulos. 2003. Single molecule characterization of P-selectin/ligand binding. Journal of Biological Chemistry 278:10556–10561.CrossRefGoogle Scholar
  62. 62.
    Krasnoslobodtsev, A. V., L. S. Shlyakhtenko, and Y. L. Lyubchenko. 2007. Probing interactions within the synaptic DNA-Sfil complex by AFM force spectroscopy. Journal of Molecular Biology 365:1407–1416.CrossRefGoogle Scholar
  63. 63.
    Yu, J. P., Q. Wang, X. L. Shi, X. Y. Ma, H. Y. Yang, Y. G. Chen, and X. H. Fang. 2007. Single-molecule force spectroscopy study of interaction between transforming growth factor beta 1 and its receptor in living cells. Journal of Physical Chemistry B 111:13619–13625.CrossRefGoogle Scholar
  64. 64.
    Baumgartner, W., P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, and D. Drenckhahn. 2000. Cadherin interaction probed by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 97:4005–4010.ADSCrossRefGoogle Scholar
  65. 65.
    Zhang, X., S. E. Craig, H. Kirby, M. J. Humphries, and V. T. Moy. 2004. Molecular basis for the dynamic strength of the integrin alpha4beta1/VCAM-1 interaction. Biophysical Journal 87:3470–3478.ADSCrossRefGoogle Scholar
  66. 66.
    Wielert-Badt, S., P. Hinterdorfer, H. J. Gruber, J. T. Lin, D. Badt, B. Wimmer, H. Schindler, and R. K. Kinne. 2002. Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy. Biophysical Journal 82:2767–2774.ADSCrossRefGoogle Scholar
  67. 67.
    Allen, S., X. Chen, J. Davies, M. C. Davies, A. C. Dawkes, J. C. Edwards, C. J. Roberts, J. Sefton, S. J. Tendler, and P. M. Williams. 1997. Detection of antigen–antibody binding events with the atomic force microscope. Biochemistry 36:7457–7463.CrossRefGoogle Scholar
  68. 68.
    Hinterdorfer, P., W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler. 1996. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 93:3477–3481.ADSCrossRefGoogle Scholar
  69. 69.
    Allen, S., J. Davies, M. C. Davies, A. C. Dawkes, C. J. Roberts, S. J. Tendler, and P. M. Williams. 1999. The influence of epitope availability on atomic-force microscope studies of antigen-antibody interactions. Biochemical Journal 341:173–178.CrossRefGoogle Scholar
  70. 70.
    Vinckier, A., P. Gervasoni, F. Zaugg, U. Ziegler, P. Lindner, P. Groscurth, A. Pluckthun, and G. Semenza. 1998. Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins. Biophysical Journal 74:3256–3263.ADSCrossRefGoogle Scholar
  71. 71.
    Yip, C. M., C. C. Yip, and M. D. Ward. 1998. Direct force measurements of insulin monomer-monomer interactions. Biochemistry 37:5439–5449.CrossRefGoogle Scholar
  72. 72.
    Nakajima, H., Y. Kunioka, K. Nakano, K. Shimizu, M. Seto, and T. Ando. 1997. Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin. Biochemical and Biophysical Research Communications 234:178–182.CrossRefGoogle Scholar
  73. 73.
    Berry, M., T. J. McMaster, A. P. Corfield, and M. J. Miles. 2001. Exploring the molecular adhesion of ocular mucins. Biomacromolecules 2:498–503.CrossRefGoogle Scholar
  74. 74.
    Dammer, U., O. Popescu, P. Wagner, D. Anselmetti, H. J. Guntherodt, and G. N. Misevic. 1995. Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267:1173–1175.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaohui Zhang
    • 1
  • Felix Rico
    • 2
  • Amy J. Xu
    • 3
  • Vincent T. Moy
    • 2
  1. 1.Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai 200031China
  2. 2.Department of Physiology and BiophysicsUniversity of Miami Miller School of MedicineMiamiUSA
  3. 3.MD/PhD program, HMS-MIT Division of Health Sciences and TechnologyHarvard Medical SchoolBostonUSA

Personalised recommendations