Recognition Imaging Using Atomic Force Microscopy

  • Andreas Ebner
  • Lilia Chtcheglova
  • Jilin Tang
  • David Alsteens
  • Vincent Dupres
  • Yves F. Dufrêne
  • Peter Hinterdorfer


Recognition imaging using atomic force microscopy (AFM) offers a wealth of new opportunities in biophysical research, such as its ability to localize specific chemical groups and biological receptors on biosurfaces and to measure their molecular-scale interactions. By attaching well-defined chemical groups on tips, it is possible to map chemical properties and interactions on cell surfaces on a scale of a few functional groups. Single-molecule force spectroscopy with tips functionalized with relevant bioligands provides a means of localizing individual receptors and measuring their specific binding forces. Alternatively, recognition sites may also be mapped with unprecedented temporal resolution using dynamic recognition imaging, in which molecular recognition signals are detected during dynamic force microscopy imaging. These AFM modalities, which all have functionalization of the tips with specific molecules in common, provide new avenues for understanding the structure–function of cell surfaces in connection with medical and physiological issues.


Atomic Force Microscopy Adhesion Force Recognition Image Cystic Fibrosis Transmembrane Regulator Force Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Foundation for Scientific Research (FNRS), the Université Catholique de Louvain (Fonds Spéciaux de Recherche), the Région Wallonne, the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme), and the Research Department of the Communauté Française de Belgique (Concerted Research Action). YD and DA are Research Associate and Research Fellow of the FRS-FNRS, respectively. This work was further supported by the FFG program of the European Union projects Tips4Cells (LSHG-CT2005-512101), NASSAP (EC-STREP-13532), BioLightTouch (028181), and IMMUNANOMAP (MRTN-CT-2006-035946). AE and LC are Research Associates of the BioLigthTouch, and JT is Research Associate of the NASSAP project.


  1. 1.
    Dufrêne, Y. F. 2008. Towards nanomicrobiology using atomic force microscopy. Nat. Rev. Microbiol. 6:674–680.Google Scholar
  2. 2.
    Engel, A., and D. J. Muller. 2000. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7:715–718.CrossRefGoogle Scholar
  3. 3.
    Gerber, C., and H. P. Lang. 2006. How the doors to the nanoworld were opened. Nat. Nanotechnol. 1:3–5.ADSCrossRefGoogle Scholar
  4. 4.
    Hinterdorfer, P., and Y. F. Dufrene. 2006. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3:347–355.CrossRefGoogle Scholar
  5. 5.
    Müller, D. J., K. T. Sapra, S. Scheuring, A. Kedrov, P. L. Frederix, D. Fotiadis, and A. Engel. 2006. Single-molecule studies of membrane proteins. Curr. Opin. Struct. Biol. 16:489–495.CrossRefGoogle Scholar
  6. 6.
    Burnham, N. A., X. Chen, C. S. Hodges, G. A. Matei, E. J. Thoreson, C. J. Roberts, M. C. Davies, and S. J. B. Tendler. 2003. Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14:1–6.ADSCrossRefGoogle Scholar
  7. 7.
    Frisbie, C. D., L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber. 1994. Functional-group imaging by chemical force microscopy. Science 265:2071–2074.ADSCrossRefGoogle Scholar
  8. 8.
    Noy, A. 2006. Chemical force microscopy of chemical and biological interactions. Surf. Interface Anal. 38:1429–1441.CrossRefGoogle Scholar
  9. 9.
    Dufrêne, Y. F. 2008. Atomic force microscopy and chemical force microscopy of microbial cells. Nat. Protocols 3:1132–1138.CrossRefGoogle Scholar
  10. 10.
    Alsteens, D., E. Dague, P. G. Rouxhet, A. R. Baulard, and Y. F. Dufrêne. 2007. Direct measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 23:11977–11979.CrossRefGoogle Scholar
  11. 11.
    Vezenov, D. V., A. Noy, L. F. Rozsnyai, and C. M. Lieber. 1997. Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. J. Am. Chem. Soc. 119:2006–2015.CrossRefGoogle Scholar
  12. 12.
    Ahimou, F., F. A. Denis, A. Touhami, and Y. F. Dufrene. 2002. Probing microbial cell surface charges by atomic force microscopy. Langmuir 18:9937–9941.CrossRefGoogle Scholar
  13. 13.
    Dague, E., D. Alsteens, J. P. Latge, C. Verbelen, D. Raze, A. R. Baulard, and Y. F. Dufrêne. 2007. Chemical force microscopy of single live cells. Nano Lett. 7:3026–3030.ADSCrossRefGoogle Scholar
  14. 14.
    Dague, E., D. Alsteens, J. P. Latgé, and Y. F. Dufrêne. 2008. High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys. J. 94:656–660.CrossRefGoogle Scholar
  15. 15.
    Alsteens, D., C. Verbelen, E. Dague, D. Raze, A. R. Baulard, and Y. F. Dufrêne. 2008. Organization of the mycobacterial cell wall: A nanoscale view. Eur. J. Physiol. 456:117–125.CrossRefGoogle Scholar
  16. 16.
    Florin, E. L., V. T. Moy, and H. E. Gaub. 1994. Adhesion forces between individual ligand receptor pairs. Science 264:415–417.ADSCrossRefGoogle Scholar
  17. 17.
    Lee, G. U., D. A. Kidwell, and R. J. Colton. 1994. Sensing discrete streptavidin biotin interactions with atomic force microscopy. Langmuir 10:354–357.CrossRefGoogle Scholar
  18. 18.
    Fritz, J., A. G. Katopodis, F. Kolbinger, and D. Anselmetti. 1998. Force-mediated kinetics of single P-selectin ligand complexes observed by atomic force microscopy. Proc. Natl. Acad. Sci. USA. 95:12283–12288.ADSCrossRefGoogle Scholar
  19. 19.
    Lee, G. U., L. A. Chrisey, and R. J. Colton. 1994. Direct measurement of the forces between complementary strands of DNA. Science 266:771–773.ADSCrossRefGoogle Scholar
  20. 20.
    Touhami, A., B. Hoffmann, A. Vasella, F. A. Denis, and Y. F. Dufrene. 2003. Probing specific lectin–carbohydrate interactions using atomic force microscopy imaging and force measurements. Langmuir 19:1745–1751.CrossRefGoogle Scholar
  21. 21.
    Dammer, U., O. Popescu, P. Wagner, D. Anselmetti, H. J. Guntherodt, and G. N. Misevic. 1995. Binding strength between cell-adhesion proteoglycans measured by atomic force microscopy. Science 267:1173–1175.ADSCrossRefGoogle Scholar
  22. 22.
    Berquand, A., N. Xia, D. G. Castner, B. H. Clare, N. L. Abbott, V. Dupres, Y. Adriaensen, and Y. F. Dufrêne. 2005. Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy. Langmuir 21:5517–5523.CrossRefGoogle Scholar
  23. 23.
    Dupres, V., F. D. Menozzi, C. Locht, B. H. Clare, N. L. Abbott, S. Cuenot, C. Bompard, D. Raze, and Y. F. Dufrêne. 2005. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat. Methods 2:515–520.CrossRefGoogle Scholar
  24. 24.
    Hinterdorfer, P., W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler. 1996. Detection and localization of individual antibody–antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93:3477–3481.ADSCrossRefGoogle Scholar
  25. 25.
    Allen, S., X. Y. Chen, J. Davies, M. C. Davies, A. C. Dawkes, J. C. Edwards, C. J. Roberts, J. Sefton, S. J. B. Tendler, and P. M. Williams. 1997. Detection of antigen–antibody binding events with the atomic force microscope. Biochemistry 36:7457–7463.CrossRefGoogle Scholar
  26. 26.
    Ong, Y. L., A. Razatos, G. Georgiou, and M. M. Sharma. 1999. Adhesion forces between E-coli bacteria and biomaterial surfaces. Langmuir 15:2719–2725.CrossRefGoogle Scholar
  27. 27.
    Bowen, W. R., N. Hilal, R. W. Lovitt, and C. J. Wright. 1998. Direct measurement of the force of adhesion of a single biological cell using an atomic force microscope. Colloids Surf. A Physicochem. Eng. Asp. 136:231–234.CrossRefGoogle Scholar
  28. 28.
    Lower, S. K., M. F. Hochella, and T. J. Beveridge. 2001. Bacterial recognition of mineral surfaces: Nanoscale interactions between Schewanella and alpha-FeOOH. Science 292:1360–1363.ADSCrossRefGoogle Scholar
  29. 29.
    Benoit, M., D. Gabriel, G. Gerisch, and H. E. Gaub. 2000. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2:313–317.CrossRefGoogle Scholar
  30. 30.
    Zhang, X. H., E. Wojcikiewicz, and V. T. Moy. 2002. Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophys. J. 83:2270–2279.ADSCrossRefGoogle Scholar
  31. 31.
    Ebner, A., P. Hinterdorfer, and H. J. Gruber. 2007. Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy 107:922–927.CrossRefGoogle Scholar
  32. 32.
    Ros, R., F. Schwesinger, D. Anselmetti, M. Kubon, R. Schafer, A. Pluckthun, and L. Tiefenauer. 1998. Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc. Natl. Acad. Sci. USA 95:7402–7405.ADSCrossRefGoogle Scholar
  33. 33.
    Strunz, T., K. Oroszlan, R. Schafer, and H. J. Guntherodt. 1999. Dynamic force spectroscopy of single DNA molecules. Proc. Natl. Acad. Sci. USA 96:11277–11282.ADSCrossRefGoogle Scholar
  34. 34.
    Schumakovitch, I., W. Grange, T. Strunz, P. Bertoncini, H. J. Guntherodt, and M. Hegner. 2002. Temperature dependence of unbinding forces between complementary DNA strands. Biophys. J. 82:517–521.CrossRefGoogle Scholar
  35. 35.
    Baumgartner, W., P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, and D. Drenckhahn. 2000. Cadherin interaction probed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 97:4005–4010.ADSCrossRefGoogle Scholar
  36. 36.
    Baumgartner, W., H. J. Gruber, P. Hinterdorfer, and D. Drenckhahn. 2000. Affinity of trans-interacting VE-cadherin determined by atomic force microscopy. Single Mol. 1:119–122.ADSCrossRefGoogle Scholar
  37. 37.
    Ludwig, M., W. Dettmann, and H. E. Gaub. 1997. Atomic force microscope imaging contrast based on molecular recognition. Biophys. J. 72:445–448.ADSCrossRefGoogle Scholar
  38. 38.
    Grandbois, M., W. Dettmann, M. Benoit, and H. E. Gaub. 2000. Affinity imaging of red blood cells using an atomic force microscope. J. Histochem. Cytochem. 48:719–724.CrossRefGoogle Scholar
  39. 39.
    Lehenkari, P. P., G. T. Charras, A. Nykänen, and M. A. Horton. 2000. Adapting atomic force microscopy for cell biology. Ultramicroscopy 82:289–295.CrossRefGoogle Scholar
  40. 40.
    Almqvist, N., R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal. 2004. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 86:1753–1762.ADSCrossRefGoogle Scholar
  41. 41.
    Gilbert, Y., M. Deghorain, L. Wang, B. Xu, P. D. Pollheimer, H. J. Gruber, J. Errington, B. Hallet, X. Haulot, C. Verbelen, P. Hols, and Y. F. Dufrene. 2007. Single-molecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. Nano Lett. 7:796–801.ADSCrossRefGoogle Scholar
  42. 42.
    Camesano, T. A., Y. Liu, and M. Datta. 2007. Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques. Adv. Water Resour. 30:1470–1491.ADSCrossRefGoogle Scholar
  43. 43.
    Alsteens, D., V. Dupres, K. Mc Evoy, L. Wildling, H. J. Gruber, and Y. F. Dufrêne. 2008. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM. Nanotechnology, 19:384005(9pp).Google Scholar
  44. 44.
    Francius, G., S. Lebeer, D. Alsteens, L. Wildling, H. J. Gruber, P. Hols, S. De Keersmaecker, J. Vanderleyden, and Y. F. Dufrêne. 2008. Detection, localization and conformational analysis of single polysaccharide molecules on live bacteria. ACS Nano, 2:1921–1929.Google Scholar
  45. 45.
    Sotres, J., A. Lostao, L. Wildling, A. Ebner, C. Gomez-Moreno, H. J. Gruber, P. Hinterdorfer, and A. M. Baro. 2008. Unbinding molecular recognition force maps of localized single receptor molecules by atomic force microscopy. Chemphyschem 9:590–599.CrossRefGoogle Scholar
  46. 46.
    Ebner, A., F. Kienberger, G. Kada, C. M. Stroh, M. Geretschlager, A. S. M. Kamruzzahan, L. Wildling, W. T. Johnson, B. Ashcroft, J. Nelson, S. M. Lindsay, H. J. Gruber, and P. Hinterdorfer. 2005. Localization of single avidin–biotin interactions using simultaneous topography and molecular recognition imaging. Chemphyschem 6:897–900.CrossRefGoogle Scholar
  47. 47.
    Kienberger, F., A. Ebner, H. J. Gruber, and P. Hinterdorfer. 2006. Molecular recognition imaging and force spectroscopy of single biomolecules. Acc. Chem. Res. 39:29–36.CrossRefGoogle Scholar
  48. 48.
    Stroh, C., H. Wang, R. Bash, B. Ashcroft, J. Nelson, H. Gruber, D. Lohr, S. M. Lindsay, and P. Hinterdorfer. 2004. Single-molecule recognition imaging microscopy. Proc. Natl. Acad. Sci. USA 101:12503–12507.ADSCrossRefGoogle Scholar
  49. 49.
    Chtcheglova, L. A., F. Atalar, U. Ozbek, L. Wildling, A. Ebner, and P. Hinterdorfer. 2008. Localization of the ergtoxin-1 receptors on the voltage sensing domain of hERG K+ channel by AFM recognition imaging. Pflugers Arch. Eur. J. Physiol. 456:247–254.CrossRefGoogle Scholar
  50. 50.
    Chtcheglova, L. A., J. Waschke, L. Wildling, D. Drenckhahn, and P. Hinterdorfer. 2007. Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys. J. 93:L11–13.CrossRefGoogle Scholar
  51. 51.
    Ebner, A., D. Nikova, T. Lange, J. Haeberle, S. Falk, A. Duebbers, R. Bruns, P. Hinterdorfer, H. Oberleithner, and H. Schillers 2008. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging. Nanotechnology19:384017.Google Scholar
  52. 52.
    Stroh, C. M., A. Ebner, M. Geretschlager, G. Freudenthaler, F. Kienberger, A. S. M. Kamruzzahan, S. J. Smith-Gill, H. J. Gruber, and P. Hinterdorfer. 2004. Simultaneous topography and recognition imaging using force microscopy. Biophys. J. 87:1981–1990.ADSCrossRefGoogle Scholar
  53. 53.
    Ebner, A., L. Wildling, R. Zhu, C. Rankl, T. Haselgrubler, P. Hinterdorfer, and H. J. Gruber. 2007. Funtionalization of probe tips and supports for single-molecule recognition force microscopy. Top Curr. Chem 285:29–76.Google Scholar
  54. 54.
    Liu, Y. Z., S. H. Leuba, and S. M. Lindsay. 1999. Relationship between stiffness and force in single molecule pulling experiments. Langmuir 15:8547–8548.CrossRefGoogle Scholar
  55. 55.
    Lin, L., H. Wang, Y. Liu, H. Yan, and S. Lindsay. 2006. Recognition imaging with a DNA aptamer. Biophys. J. 90:4236–4238.ADSCrossRefGoogle Scholar
  56. 56.
    Lin, L., D. Hom, S. M. Lindsay, and J. C. Chaput. 2007. In vitro selection of histone h4 aptamers for recognition imaging microscopy. J. Am. Chem. Soc. 129:14568–14569.CrossRefGoogle Scholar
  57. 57.
    Sleytr, U. B., C. Huber, N. Ilk, D. Pum, B. Schuster, and E. M. Egelseer. 2007. S-layers as a tool kit for nanobiotechnological applications. FEMS Microbiol. Lett. 267:131–144.CrossRefGoogle Scholar
  58. 58.
    Sleytr, U. B., M. Sara, D. Pum, and B. Schuster. 2001. Characterization and use of crystalline bacterial cell surface layers. Prog. Surf. Sci. 68:231–278.ADSCrossRefGoogle Scholar
  59. 59.
    Sleytr, U. B., and T. J. Beveridge. 1999. Bacterial S-layers. Trends Microbiol. 7:253–260.CrossRefGoogle Scholar
  60. 60.
    Sleytr, U. B., P. Messner, D. Pum, and M. Sara. 1999. Crystalline bacterial cell surface layers (S layers): From supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem. Int. Ed. 38:1035–1054.CrossRefGoogle Scholar
  61. 61.
    Sleytr, U. B., E. M. Egelseer, N. Ilk, D. Pum, and B. Schuster. 2007. S-Layers as a basic building block in a molecular construction kit. FEBS J. 274:323–334.CrossRefGoogle Scholar
  62. 62.
    Voss, S., and A. Skerra. 1997. Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng. 10:975–982.CrossRefGoogle Scholar
  63. 63.
    Ilk, N., P. Kosma, M. Puchberger, E. M. Egelseer, H. F. Mayer, U. B. Sleytr, and M. Sára. 1999. Structural and functional analyses of the secondary cell wall polymer of Bacillus sphaericus CCM 2177 that serves as an S-layer specific anchor. J. Bacteriol. 181:7643–7646.Google Scholar
  64. 64.
    Pleschberger, M., A. Neubauer, E. M. Egelseer, S. Weigert, B. Lindner, U. B. Sleytr, S. Muyldermans, and M. Sara. 2003. Generation of a functional monomolecular protein lattice consisting of an S-layer fusion protein comprising the variable domain of a camel heavy chain antibody Bioconjug. Chem. 14:440–448.Google Scholar
  65. 65.
    Tang, J., A. Ebner, N. Ilk, H. Lichtblau, C. Huber, R. Zhu, D. Pum, M. Leitner, V. Pastushenko, H. J. Gruber, U. B. Sleytr, and P. Hinterdorfer. 2007. High-affinity tags fused to S-layer proteins probed by atomic force microscopy. Langmuir 24:1324–1329.CrossRefGoogle Scholar
  66. 66.
    Ebner, A., F. Kienberger, G. Kada, C. M. Stroh, M. Geretschlager, A. S. Kamruzzahan, L. Wildling, W. T. Johnson, B. Ashcroft, J. Nelson, S. M. Lindsay, H. J. Gruber, and P. Hinterdorfer. 2005. Localization of single avidin–biotin interactions using simultaneous topography and molecular recognition imaging. Chemphyschem 6:897–900.CrossRefGoogle Scholar
  67. 67.
    Schwiebert, E. M., D. J. Benos, and C. M. Fuller. 1998. Cystic fibrosis: A multiple exocrinopathy caused by dysfunctions in a multifunctional transport protein. Am. J. Med. 104:576–590.CrossRefGoogle Scholar
  68. 68.
    Braunstein, G. M., R. M. Roman, J. P. Clancy, B. A. Kudlow, A. L. Taylor, V. G. Shylonsky, B. Jovov, K. Peter, T. Jilling, Ismailov, II, D. J. Benos, L. M. Schwiebert, J. G. Fitz, and E. M. Schwiebert. 2001. Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation. J. Biol. Chem. 276:6621–6630.Google Scholar
  69. 69.
    Dupuit, F., N. Kalin, S. Brezillon, J. Hinnrasky, B. Tummler, and E. Puchelle. 1995. CFTR and differentiation markers expression in non-CF and delta-F-508 homozygous CF nasal epithelium. J. Clin. Invest. 96:1601–1611.CrossRefGoogle Scholar
  70. 70.
    Kalin, N., A. Claass, M. Sommer, E. Puchelle, and B. Tummler. 1999. Delta F508 CFTR protein expression in tissues from patients with cystic fibrosis. J. Clin. Invest. 103:1379–1389.CrossRefGoogle Scholar
  71. 71.
    Lange, T., P. Jungmann, J. Haberle, S. Falk, A. Duebbers, R. Bruns, A. Ebner, P. Hinterdorfer, H. Oberleithner, and H. Schillers. 2006. Reduced number of CFTR molecules in erythrocyte plasma membrane of cystic fibrosis patients. Mol. Membr. Biol. 23:317–323.CrossRefGoogle Scholar
  72. 72.
    Sprague, R. S., M. L. Ellsworth, A. H. Stephenson, M. E. Kleinhenz, and A. J. Lonigro. 1998. Deformation-induced ATP release from red blood cells requires CFTR activity. Am. J. Physiol. Heart Circ. Physiol. 275:H1726–H1732.Google Scholar
  73. 73.
    Sterling, K. M., S. Shah, R. J. Kim, N. I. F. Johnston, A. Y. Salikhova, and E. H. Abraham. 2004. Cystic fibrosis transmembrane conductance regulator in human and mouse red blood cell membranes and its interaction with ecto-apyrase. J. Cell. Biochem. 91:1174–1182.CrossRefGoogle Scholar
  74. 74.
    Stumpf, A., J. Almaca, K. Kunzelmann, K. Wenners-Epping, S. M. Huber, J. Haberle, S. Falk, A. Duebbers, M. Walte, H. Oberleithner, and H. Schillers. 2006. IADS, a decomposition product of DIDS activates a cation conductance in Xenopus oocytes and human erythrocytes: New compound for the diagnosis of cystic fibrosis. Cell. Physiol. Biochem. 18:243–252.CrossRefGoogle Scholar
  75. 75.
    Stumpf, A., K. Wenners-Epping, M. Walte, T. Lange, H. G. Koch, J. Haberle, A. Dubbers, S. Falk, L. Kiesel, D. Nikova, R. Bruns, H. Bertram, H. Oberleithner, and H. Schillers. 2006. Physiological concept for a blood based CFTR test. Cell. Physiol. Biochem. 17:29–36.CrossRefGoogle Scholar
  76. 76.
    Verloo, P., C. H. M. Kocken, A. Van der Wel, B. C. Tilly, B. M. Hogema, M. Sinaasappel, A. W. Thomas, and H. R. De Jonge. 2004. Plasmodium falciparum-activated chloride channels are defective in erythrocytes from cystic fibrosis patients. J. Biol. Chem. 279:10316–10322.CrossRefGoogle Scholar
  77. 77.
    Vincent, P. A., K. Xiao, K. M. Buckley, and A. P. Kowalczyk. 2004. VE-cadherin: Adhesion at arm’s length. AJP Cell Physiol. 286:C987–997.CrossRefGoogle Scholar
  78. 78.
    Lee, S., J. Mandic, and K. J. Van Vliet. 2007. Chemomechanical mapping of ligand–receptor binding kinetics on cells. Proc. Natl. Acad. Sci. USA 104:9609–9614.ADSCrossRefGoogle Scholar
  79. 79.
    Putman, C. A. J., B. G. Degrooth, P. K. Hansma, N. F. Vanhulst, and J. Greve. 1993. Immunogold labels: Cell-surface markers in atomic force microscopy. Ultramicroscopy 48:177–182.CrossRefGoogle Scholar
  80. 80.
    Arntz, Y., L. Jourdainne, G. Greiner-Wacker, S. Rinckenbach, J. Ogier, J. C. Voegel, P. Lavalle, and D. Vautier. 2006. Immunogold detection of types I and II chondrocyte collagen fibrils: An in situ atomic force microscopic investigation. Microsc. Res. Tech. 69:283–290.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andreas Ebner
    • 1
  • Lilia Chtcheglova
    • 1
  • Jilin Tang
    • 1
  • David Alsteens
    • 2
  • Vincent Dupres
    • 2
  • Yves F. Dufrêne
    • 2
  • Peter Hinterdorfer
    • 1
  1. 1.Institute for Biophysics, Johannes Kepler University of LinzA-4040 LinzAustria
  2. 2.Unité de chimie des interfaces, Université catholique de LouvainB-1348 Louvain-la-NeuveBelgium

Personalised recommendations