High-Speed Atomic Force Microscopy

  • Toshio Ando
  • Takayuki Uchihashi


Biological macromolecules are responsible for the vital activities of life. Among the various approaches to understanding their functional mechanisms, the most straightforward approach is to directly visualize the structure and dynamic action of biological macromolecules at high spatial and temporal resolution. However, the microscopy needed to enable such visualization was not available until the recent development of high-speed atomic force microscopy (AFM). This allows the recording of images of biological samples at 30–60 ms/frame without disturbing delicate biomolecular interactions and hence the delineation of time-series events that occur in biomolecules at work. This chapter describes various devices and techniques developed for high-speed AFM and imaging studies performed on several protein systems.


Piezoelectric Actuator Proportional Integral Derivative Phosphatidyl Ethanolamine Planar Lipid Bilayer Proportional Integral Derivative Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Afrin R., M. T. Alam, and A. Ikai, Pretransition and progressive softening of bovine carbonic anhydrase II as probed by single molecule atomic force microscopy, Protein Sci. 14:1447–1457 (2005).CrossRefGoogle Scholar
  2. Albrecht T. R., P. Grütter, D. Horne, and D. Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 69:668–673 (1991).ADSCrossRefGoogle Scholar
  3. Anczykowski B., J. P. Cleveland, D. Krüger, V. Elings, and H. Fuchs, Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation, Appl. Phys. A 66:S885–S889 (1998).ADSCrossRefGoogle Scholar
  4. Ando T., N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, A high-speed atomic force microscope for studying biological macromolecules, Proc. Natl. Acad. Sci. USA 98:12468–12472 (2001).ADSCrossRefGoogle Scholar
  5. Ando T., N. Kodera, D. Maruyama, E. Takai, K. Saito, and A. Toda, A high-speed atomic force microscope for studying biological macromolecules in action, Jpn. J. Appl. Phys. 41:4851–4856 (2002).ADSCrossRefGoogle Scholar
  6. Ando T., N. Kodera, Y. Naito, T. Kinoshita, K. Furuta, and Y. Y. Toyoshima, A High-speed atomic force microscope for studying biological macromolecules in action, Chem. Phys. Chem. 4:1196–1202 (2003).CrossRefGoogle Scholar
  7. Ando T., T. Uchihashi, N. Kodera, A. Miyagi, R. Nakakita, H. Yamashita, and K. Matada, High-speed atomic force microscopy for capturing the dynamic behavior of protein molecules at work, Surf. Sci. Nanotechnol. 3:384–392 (2005).CrossRefGoogle Scholar
  8. Ando T., T. Uchihashi, N. Kodera, A. Miyagi, R. Nakakita, H. Yamashita, and M. Sakashita, High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work, Jpn. J. Appl. Phys. 45:1897–1903 (2006).ADSCrossRefGoogle Scholar
  9. Ando T., T. Uchihashi, N. Kodera, D. Yamamoto, M. Taniguchi, A. Miyagi, and H. Yamashita, High-speed atomic force microscopy for observing dynamic biomolecular processes, J. Mol. Recognit. 20:448–458 (2007).CrossRefGoogle Scholar
  10. Ando T., T. Uchihashi, N. Kodera, D. Yamamoto, A. Miyagi, M. Taniguchi, and H. Yamashita, High-speed AFM and nano-visualization of biomolecular processes, Pflugers Arch. Eur. J. Physiol. 456:211–225 (2008a).CrossRefGoogle Scholar
  11. Ando T., T. Uchihashi, and T. Fukuma, High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes, Prog. Surf. Sci. 83:337–437 (2008b).Google Scholar
  12. Azem A., M. Kessel, and P. Goloubinoff, Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer, Science 265:653–656 (1994).ADSCrossRefGoogle Scholar
  13. Bar G., Y. Thomann, R. Brandsch, H.-J. Cantow, and M.-H. Whangbo, Factors affecting the height and phase images in tapping mode atomic force microscopy. Study of phase-separated polymer blends of poly(ethene-co-styrene) and poly (2,6-dimethyl- 1,4-phenylene oxide), Langmuir 13:3807–3812 (1997).CrossRefGoogle Scholar
  14. Belotserkovskaya R., S. Oh, V. A. Bondarenko, G. Orphanides, V. M. Studitsky, and D. Reinberg, FACT facilitates transcription-dependent nucleosome alteration, Science 301:1090–1093 (2003).ADSCrossRefGoogle Scholar
  15. Burgess S. A., M. L. Walker, F. Wang, J. P. Sellers, H. D. White, P. J. Knight, and J. Trinick, The prepower stroke conformation of myosin V, J. Cell Biol. 159:983–991 (2002).CrossRefGoogle Scholar
  16. Burgess S. A., M. L. Walker, H. Sakakibara, P. J. Knight, and K. Oiwa, Dynein structure and power stroke, Nature 421:715–718 (2003).ADSCrossRefGoogle Scholar
  17. Burston S. G., N. A. Ranson, and A. R. Clarke, The origins and consequences of asymmetry in the chaperonin reaction cycle, J. Mol. Biol. 249:138–152 (1995).CrossRefGoogle Scholar
  18. Braig K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, and P. B. Sigler, The crystal structure of the bacterial chaperonin GroEL at 2.8 Å, Nature 371:578–586 (1994).ADSCrossRefGoogle Scholar
  19. Chang W.-J., J.-C. Hsu, and T.-H. Lai, Inverse calculation of the tip–sample interaction force in atomic force microscopy by the conjugate gradient method, J. Phys. D Appl. Phys. 37:1123–1126 (2004).ADSCrossRefGoogle Scholar
  20. Cleveland J. P., B. Anczykowski, A. E. Schmid, and V. B. Elings, Energy dissipation in tapping-mode atomic force microscopy, Appl. Phys. Lett. 72:2613–2615 (1998).ADSCrossRefGoogle Scholar
  21. Czajkowsky D. M., M. J. Allen, V. Elings, and Z. Shao, Direct visualization of surface charge in aqueous solution, Ultramicroscopy 74:1–5 (1998).CrossRefGoogle Scholar
  22. Darst S. A., M. Ahlers, P. H. Meller, E. W. Kubalek, R. Blankenburg, H. O. Ribi, H. Ringsdorf, and R. D. Kornberg, Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules, Biophys. J. 59:387–396 (1991).CrossRefGoogle Scholar
  23. Demarest S. J., M. Martinez-Yamout, J. Chung, H. Chen, W. Xu, H. J. Dyson, R. M. Evans, and P. E. Wright, Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators, Nature 415:549–553 (2002).CrossRefGoogle Scholar
  24. Forkey J. N., M. E. Quinlan, M. A. Shaw, J. E. T. Corrie, and Y. E. Goldman, Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization, Nature, 422:399–404 (2003).ADSCrossRefGoogle Scholar
  25. Fukuma T., M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada, Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy, Rev. Sci. Instrum. 76:053704 (2005).ADSCrossRefGoogle Scholar
  26. Fukuma T., Y. Okazaki, N. Kodera, T. Uchihashi, and T. Ando, High resonance frequency force microscope scanner using inertia balance support, Appl. Phys. Lett. 92:243119 (2008).ADSCrossRefGoogle Scholar
  27. Gao S., L. F. Chi, S. Lenhert, B. Anczykowski, C. M. Niemeyer, M. Adler, and H. Fuchs, High quality mapping of DNA-protein complexes by dynamic scanning force microscopy, Chem. Phys. Chem. 6:384–388 (2001).CrossRefGoogle Scholar
  28. Giessibl F.J., Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy, Science 267:68–71 (1995).ADSCrossRefGoogle Scholar
  29. Grallert H. and J. Buchner, Review: A structural view of the GroE chaperone cycle, J. Struct. Biol. 135:95–103 (2001).CrossRefGoogle Scholar
  30. Hung S. K., E.-T. Hwu, I.-S. Hwang, and L.-C. Fu, Postfitting control scheme for periodic piezoscanner driving, Jpn. J. Appl. Phys. 45B:1917–1921 (2006).ADSCrossRefGoogle Scholar
  31. Kindt J. H., G. E. Fantner, J. A. Cutroni, and P. K. Hansma, Rigid design of fast scanning probe microscopes using finite element analysis, Ultramicroscopy 100:259–265 (2004).CrossRefGoogle Scholar
  32. Kitazawa M., K. Shiotani, and A. Toda, Batch fabrication of sharpened silicon nitride tips, Jpn. J. Appl. Phys. (Pt. 1) 42:4844–4847 (2003).ADSCrossRefGoogle Scholar
  33. Kodera N., H. Yamashita, and T. Ando, Active damping of the scanner for high-speed atomic force microscopy, Rev. Sci. Instrum. 76:053708 (2005).ADSCrossRefGoogle Scholar
  34. Kodera N., M. Sakashita, and T. Ando, Dynamic proportional-integral-differential controller for high-speed atomic force microscopy, Rev. Sci. Instrum. 77:083704 (2006).ADSCrossRefGoogle Scholar
  35. Kokavecz J., Z. Tóth, Z. L. Horváth, P. Heszler, and Á. Mechler, Novel amplitude and frequency demodulation algorithm for a virtual dynamic atomic force microscope, Nanotechnology 17:S173–S177 (2006).ADSCrossRefGoogle Scholar
  36. Ku A. C., S. A. Darst, C. R. Robertson, A. P. Gast, and R. D. Kornberg, Molecular analysis of two-dimensional protein crystallization, J. Phys. Chem. 97:3013–3016 (1993).CrossRefGoogle Scholar
  37. Legleiter J., M. Park, B. Cusick, and T. Kowalewski, Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale, Proc. Natl. Acad. Sci. USA 103:4813–4818 (2006).ADSCrossRefGoogle Scholar
  38. Lorimer G. H., Protein folding. Folding with a two-stroke motor, Nature 388:720–722 (1997).ADSCrossRefGoogle Scholar
  39. Minezaki Y., K. Homma, A. R. Kinjo, and K. Nishikawa, Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation, J. Mol. Biol. 359:1137–1149 (2006).CrossRefGoogle Scholar
  40. Miyagi A., Y. Tsunaka, T. Uchihashi, K. Mayanagi, S. Hirose, K. Morikawa, and T. Ando, Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy, Chem. Phys. Chem. 9:1859–1866 (2008).Google Scholar
  41. Reinberg D. and R. J. Sims III, de FACTo nucleosome dynamics, J. Biol. Chem. 281:23297–23301 (2006).CrossRefGoogle Scholar
  42. Reviakine I. and A. Brisson, Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy, Langmuir 16:1806–1815 (2000).CrossRefGoogle Scholar
  43. Reviakine I. and A. Brisson, Streptavidin 2D crystals on supported phospholipid bilayers: Toward constructing anchored phospholipid bilayers, Langmuir 17:8293–8299 (2001).CrossRefGoogle Scholar
  44. Rye H. S., S. G. Burston, W. A. Fenton, J. M. Beechem, Z. Xu, P. B. Sigler, and A. L. Horwich, Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL, Nature 388:792–798 (1997).ADSCrossRefGoogle Scholar
  45. Rye H. S., A. M. Roseman, S. Chen, K. Furtak, W. A. Fenton, H. R. Saibil, and A. L. Horwich, GroEL–GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97:325–338 (1999).CrossRefGoogle Scholar
  46. Sackmann E., Supported membranes: Scientific and practical applications, Science 271:43–48 (1996).ADSCrossRefGoogle Scholar
  47. Sahin O., Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip–sample force measurements, Rev. Sci. Instrum. 78:103707 (2007).ADSCrossRefGoogle Scholar
  48. Sahin O., S. Magonov, C. Su, C. F. Quate, and O. Solgaard, An atomic force microscope tip designed to measure time-varying nanomechanical forces, Nat Nanotechnol. 2:507–514 (2007).CrossRefGoogle Scholar
  49. Sakamoto T., I. Amitani, E. Yokota, and T. Ando, Direct observation of processive movement by individual myosin V molecules, Biochem. Biophys. Res. Commun. 272:586–590 (2000).CrossRefGoogle Scholar
  50. Scheuring S., D. J. Müller, P. Ringler, J. B. Heymann, and A. Engel, Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope, J. Microsc 193:28–35 (1999).CrossRefGoogle Scholar
  51. Schiener J., S. Witt, M. Stark, and R. Guckenberger, Stabilized atomic force microscopy imaging in liquids using second harmonic of cantilever motion for setpoint control, Rev. Sci. Instrum. 75:2564–2568 (2004).ADSCrossRefGoogle Scholar
  52. Schitter G., F. Allgöwer, and A Stemmer, A new control strategy for high-speed atomic force microscopy, Nanotechnology 15:108–114 (2004).ADSCrossRefGoogle Scholar
  53. Shimojima T., M. Okada, T. Nakayama, H. Ueda, K. Okawa, A. Iwamatsu, H. Handa, and S. Hirose, Drosophila FACT contributes to Hox gene expression through physical and functional interactions with GAGA factor, Genes Dev. 17:1605–1616 (2003).CrossRefGoogle Scholar
  54. Stark M. and R. Guckenberger, Fast low-cost phase detection setup for tapping-mode atomic force microscopy, Rev. Sci. Instrum. 70:3614–3619 (1999).ADSCrossRefGoogle Scholar
  55. Stark M., R. W. Stark, W. M. Heck, and R. Guckenberger, Inverting dynamic force microscopy: From signals to time-resolved interaction forces, Proc. Natl. Acad. Sci. USA 99:8473–8478 (2002).ADSCrossRefGoogle Scholar
  56. Syed S., G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, Adaptability of myosin V studied by simultaneous detection of position and orientation, EMBO J. 25:1795–1803 (2006).CrossRefGoogle Scholar
  57. Taguchi H., T. Ueno, H. Tadakuma, M. Yoshida, and T. Funatsu, Single-molecule observation of protein–protein interactions in the chaperonin system, Nat Biotechnol. 19:861–865 (2001).CrossRefGoogle Scholar
  58. Tamayo J., and R. García, Deformation, contact time, and phase contrast in tapping mode scanning force microscopy, Langmuir 12:4430–4435 (1996).CrossRefGoogle Scholar
  59. Tamayo J., A. D. L. Humphris, R. J. Owen, and M. J. Miles, High-Q dynamic force microscopy in liquid and its application to living cells, Biophys. J. 81:526–537 (2001).CrossRefGoogle Scholar
  60. Uchihashi T., T. Ando, and H. Yamashita, Fast phase imaging in liquids using a rapid scan atomic force microscope, Appl. Phys. Lett. 89:213112 (2006).ADSCrossRefGoogle Scholar
  61. Vadgama P., Surface biocompatibility, Annu. Rep. Prog. Chem. C Phys. Chem. 101:14–52 (2005).CrossRefGoogle Scholar
  62. Wang S.-W., C. R. Robertson, and A. P. Gast, Molecular arrangement in two-dimensional streptavidin crystals, Langmuir 15:1541–1548 (1999).CrossRefGoogle Scholar
  63. Warshaw D. M., G. G. Kennedy, S. S. Work, E. B. Krementsova, S. Beck, and K. M. Trybus, Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity, Biophys. J. 88:L30–L32 (2005).CrossRefGoogle Scholar
  64. Wulff G., Zur frage der geschwindigkeit des wachstums und der auflösung der kristallflächen Z. Kristallogr. 34:449–530 (1901).Google Scholar
  65. Xu Z., A. L. Horwich, and P. B. Sigler, The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex, Nature 388:741–750 (1997).ADSCrossRefGoogle Scholar
  66. Yamamoto D., T. Uchihashi, N. Kodera, and T. Ando, Anisotropic diffusion of point defects in two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy, Nanotechnology 19:384009 (2008).Google Scholar
  67. Yatcilla M. T., C. R. Robertson, and A. P. Gast, Influence of pH on two-dimensional streptavidin crystals, Langmuir 14:497–503 (1998).CrossRefGoogle Scholar
  68. Yifrach O. and A. L. Horovitz, Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL, Biochemistry 34:5303–5308 (1995).CrossRefGoogle Scholar
  69. Yildiz A., J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization, Science 300:2061–2065 (2003).ADSCrossRefGoogle Scholar
  70. Zhang S. F., P. Rolfe, G. Wright, W. Lian, A.J . Milling, S. Tanaka, and K. Ishihara, Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group, Biomaterials 19:691–700 (1998).CrossRefGoogle Scholar
  71. Zhong Q., D. Inniss, K. Kjoller, and V. B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surf. Sci. 290:L688–L692 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Toshio Ando
    • 1
    • 2
  • Takayuki Uchihashi
    • 1
    • 2
  1. 1.Department of PhysicsKanazawa UniversityKakuma-machiJapan
  2. 2.CREST, JSTSanban-cho Chiyoda-kuJapann

Personalised recommendations