Nanopores: Generation, Engineering, and Single-Molecule Applications

  • Stefan Howorka
  • Zuzanna Siwy


Nanopores enable the sensing of individual molecules based on the temporary blockades in ionic pore current. Initially conducted a decade ago with a biological protein pore, electrical recordings are now routinely performed with synthetic pores sculptured into polymeric and inorganic membranes. Assisted by channel engineering, the range of analytes has been expanded from nucleic acids to peptides, proteins, organic polymers, and small molecules. Apart from being an attractive analytical approach, nanopore recording has developed into a general platform technology with which it is possible to examine the biophysics, physicochemistry, and chemistry of individual molecules. Nanopores can also be exploited for separation technologies and nanofluidics due to their ability to control the flow of solvated ions. The combined use with atomic force and fluorescence microscopy is extending the versatility of nanopores for single-molecule research.


Silicon Nitride Pore Wall Protein Pore Nucleic Acid Strand Current Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hladky, S. B., and D. A. Haydon. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225:451–453.ADSGoogle Scholar
  2. 2.
    Mueller, P., D. O. Rudin, H. T. Tien, and W. C. Wescott. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980.ADSGoogle Scholar
  3. 3.
    Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802.ADSGoogle Scholar
  4. 4.
    Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85–100.Google Scholar
  5. 5.
    Hille, B. 2001. Ion channels of excitable membranes. Sinauer Associates, Sunderland, MA.Google Scholar
  6. 6.
    Sakmann, B., and B. Neher. 1995. Single-channel recording. Plenum Press, New York.Google Scholar
  7. 7.
    Miller, C. 1986. Ion channel reconstitution. Springer, New York.Google Scholar
  8. 8.
    Bezrukov, S. M., I. Vodyanoy, and V. A. Parsegian. 1994. Counting polymers moving through a single ion channel. Nature 370:279–281.ADSGoogle Scholar
  9. 9.
    Kasianowicz, J. J., E. Brandin, D. Branton, and D. W. Deamer. 1996. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93:13770–13773.ADSGoogle Scholar
  10. 10.
    Braha, O., B. Walker, S. Cheley, J. J. Kasianowicz, L. Song, J. E. Gouaux, and H. Bayley. 1997. Designed protein pores as components for biosensors. Chem. Biol. 4:497–505.Google Scholar
  11. 11a.
    Griffiths, J. 2008. The realm of the nanopore. Interest in nanoscale research has skyrocketed, and the humble pore has become a king. Anal. Chem. 80:23–27.Google Scholar
  12. 11b.
    Rhee, M., and M. A. Burns. 2007. Nanopore sequencing technology: nanopore preparations. Trends Biotechnol. 25:174–181; Dekker, C. 2007. Solid-state nanopores. Nature Nanotechnol. 2:209–215.Google Scholar
  13. 12.
    Meller, A. 2008. Nucleic-acid analysis at the single-molecule level. In Handbook of single-molecule biophysics. P. Hinterdorfer and A. M. Van Oijen, editors. Springer, New York.Google Scholar
  14. 13.
    Vercoutere, W., and M. Akeson. 2002. Biosensors for DNA sequence detection. Curr. Opin. Chem. Biol. 6:816–822.Google Scholar
  15. 14.
    Deamer, D. W., and D. Branton. 2002. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35:817–825.Google Scholar
  16. 15.
    Healy, K. 2007. Nanopore-based single-molecule DNA analysis. Nanomedicine 2:459–481.Google Scholar
  17. 16a.
    Healy, K., B. Schiedt, and A. P. Morrison. 2007. Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine 2:875–897.Google Scholar
  18. 16b.
    Zwolak, M., and M. Di Ventra. 2008. Colloquium: Physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80:141–165.Google Scholar
  19. 16c.
    Branton, D., D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. H. Huang, S. B. Jovanovich, P. S. Krstic, S. Lindsay, X. S. S. Ling, C. H. Mastrangelo, A. Meller, J. S. Oliver, Y. V. Pershin, J. M. Ramsey, R. Riehn, G. V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, and J. A. Schloss. 2008. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26:1146–1153.Google Scholar
  20. 17.
    Coulter, W. H. 1953. Means for counting particles suspended in a fluid. U.S. Patent No. 2656508.Google Scholar
  21. 18.
    Bayley, H., and C. R. Martin. 2000. Resistive-pulse sensing—From microbes to molecules. Chem. Rev. 100:2575–2594.Google Scholar
  22. 19.
    Stanley-Wood, N. G., and R. W. Lines. 1992. Particle size analysis. The Royal Society of Chemistry, Cambridge.Google Scholar
  23. 20.
    Bianco, P. R., L. R. Brewer, M. Corzett, R. Balhorn, Y. Yeh, S. C. Kowalczykowski, and R. J. Baskin. 2001. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409:374–378.ADSGoogle Scholar
  24. 21.
    Rasnik, I., S. A. McKinney, and T. Ha. 2006. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3:891–893.Google Scholar
  25. 22.
    Myong, S., I. Rasnik, C. Joo, T. M. Lohman, and T. Ha. 2005. Repetitive shuttling of a motor protein on DNA. Nature 437:1321–1325.ADSGoogle Scholar
  26. 23.
    Greulich, K. O. 2005. Single-molecule studies on DNA and RNA. ChemPhysChem 6:2458–2471.Google Scholar
  27. 24.
    Smith, D. E., S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante. 2001. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413:748–752.ADSGoogle Scholar
  28. 25.
    Chemla, Y. R., K. Aathavan, J. Michaelis, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante. 2005. Mechanism of force generation of a viral DNA packaging motor. Cell 122:683–692.Google Scholar
  29. 26.
    Abbondanzieri, E. A., W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block. 2005. Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465.ADSGoogle Scholar
  30. 27.
    Neuman, K. C., E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block. 2003. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115:437–447.Google Scholar
  31. 28.
    Herbert, K. M., A. La Porta, B. J. Wong, R. A. Mooney, K. C. Neuman, R. Landick, and S. M. Block. 2006. Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell 125:1083–1094.Google Scholar
  32. 29.
    Perkins, T. T., H. W. Li, R. V. Dalal, J. Gelles, and S. M. Block. 2004. Forward and reverse motion of single RecBCD molecules on DNA. Biophys. J. 86:1640–1648.ADSGoogle Scholar
  33. 30.
    Hansma, H. G., R. Golan, W. Hsieh, S. L. Daubendiek, and E. T. Kool. 1999. Polymerase activities and RNA structures in the atomic force microscope. J. Struct. Biol. 127:240–247.Google Scholar
  34. 31.
    Movileanu, L., and H. Bayley. 2001. Partitioning of a polymer into a nanoscopic protein pore obeys a simple scaling law. Proc. Natl. Acad. Sci. USA 98:10137–10141.ADSGoogle Scholar
  35. 32.
    Movileanu, L., S. Cheley, S. Howorka, O. Braha, and H. Bayley. 2001. Location of a constriction in the lumen of a transmembrane pore by targeted covalent attachment of polymer molecules. J. Gen. Physiol. 117:239–252.Google Scholar
  36. 33.
    Krasilnikov, O. V., C. G. Rodrigues, and S. M. Bezrukov. 2006. Single polymer molecules in a protein nanopore in the limit of a strong polymer–pore attraction. Phys. Rev. Lett. 97:018301(1)–018301(4).ADSGoogle Scholar
  37. 34.
    Bayley, H., O. Braha, and L. Gu. 2000. Stochastic sensing with protein pores. Adv. Mater. 12:139–142.Google Scholar
  38. 35.
    Howorka, S., L. Movileanu, O. Braha, and H. Bayley. 2001. Kinetics of duplex formation for individual DNA strands within a single protein nanopore. Proc. Natl. Acad. Sci. USA 98:12996–13001.ADSGoogle Scholar
  39. 36a.
    Howorka, S., J. Nam, H. Bayley, and D. Kahne. 2004. Stochastic detection of monovalent and multivalent protein–ligand interactions. Angew. Chem. Int. Ed. Engl. 43:842–846.Google Scholar
  40. 36b.
    Mayer, M., V. Semetey, I. Gitlin, J. Yang, and G. M. Whitesides. 2008. Using ion channel-forming peptides to quantify protein-ligand interactions. J. Am. Chem. Soc. 130:1453–1465.Google Scholar
  41. 37.
    Hornblower, B., A. Coombs, R. D. Whitaker, A. Kolomeisky, S. J. Picone, A. Meller, and M. Akeson. 2007. Single-molecule analysis of DNA–protein complexes using nanopores. Nat. Methods 4:315–317.Google Scholar
  42. 38.
    Cockroft, S. L., J. Chu, M. Amorin, and M. R. Ghadiri. 2008. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130:818–820.Google Scholar
  43. 39.
    Benner, S., R. J. A. Chen, N. A. Wilson, R. Abu-Shumays, N. Hurt, K. R. Lieberman, D. W. Deamer, W. B. Dunbar, and M. Akeson. 2007. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat. Nanotechnol. 2:718–724.ADSGoogle Scholar
  44. 40.
    Astier, Y., D. E. Kainov, H. Bayley, R. Tuma, and S. Howorka. 2007. Stochastic detection of motor protein–RNA complexes by single-channel current recording. ChemPhysChem 8:2189–2194.Google Scholar
  45. 41.
    Luchian, T., S. H. Shin, and H. Bayley. 2003. Kinetics of a three-step reaction observed at the single-molecule level. Angew. Chem. Int. Ed. Engl. 42:1926–1929.Google Scholar
  46. 42.
    Loudwig, S., and H. Bayley. 2006. Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength. J. Am. Chem. Soc. 128:12404–12405.Google Scholar
  47. 43.
    Movileanu, L., J. P. Schmittschmitt, J. M. Scholtz, and H. Bayley. 2005. Interactions of peptides with a protein pore. Biophys. J. 89:1030–1045.Google Scholar
  48. 44a.
    Stefureac, R., Y. T. Long, H. B. Kraatz, P. Howard, and J. S. Lee. 2006. Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores. Biochemistry 45:9172–9179.Google Scholar
  49. 44b.
    Zhao, Q., D. A. Jayawardhana, D. Wang, and X. Guan. 2009. Study of peptide transport through engineered protein channels. J. Phys. Chem. B. 113:3572–3578.Google Scholar
  50. 45.
    Kullman, L., M. Winterhalter, and S. M. Bezrukov. 2002. Transport of maltodextrins through maltoporin: a single-channel study. Biophys. J. 82:803–812.Google Scholar
  51. 46.
    Nestorovich, E. M., C. Danelon, M. Winterhalter, and S. M. Bezrukov. 2002. Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc. Natl. Acad. Sci. USA 99:9789–9794.ADSGoogle Scholar
  52. 47.
    Rostovtseva, T. K., and S. M. Bezrukov. 1998. ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys. J. 74:2365–2373.ADSGoogle Scholar
  53. 48.
    Rostovtseva, T. K., A. Komarov, S. M. Bezrukov, and M. Colombini. 2002. VDAC channels differentiate between natural metabolites and synthetic molecules. J. Membr. Biol. 187:147–156.Google Scholar
  54. 49.
    Hume, R. I., L. W. Role, and G. D. Fischbach. 1983. Acetylcholine release from growth cones detected with patches of acetylcholine receptor–rich membranes. Nature 305:632–634.ADSGoogle Scholar
  55. 50.
    Allen, T. G. 1997. The ‘sniffer-patch’ technique for detection of neurotransmitter release. Trends Neurosci. 20:192–197.Google Scholar
  56. 51.
    Bayley, H., and P. S. Cremer. 2001. Stochastic sensors inspired by biology. Nature 413:226–230.ADSGoogle Scholar
  57. 52.
    Bayley, H., and L. Jayasinghe. 2004. Functional engineered channels and pores. Mol. Membr. Biol. 21:209–220.Google Scholar
  58. 53.
    Bayley, H., O. Braha, S. Cheley, and L. Q. Gu. 2005. Engineered nanopores. In Nanobiotechnology: Concepts, applications and perspectives. C. M. Niemeyer and C. A. Mirkin, editors. Wiley-VCH, Weinheim, Germany, pp. 93–110.Google Scholar
  59. 54.
    Bong, D. T., T. D. Clark, J. R. Granja, and M. R. Ghadiri. 2001. Self-assembling organic nanotubes. Angew. Chem. Int. Ed. Engl. 40:988–1011.Google Scholar
  60. 55.
    Matile, S., A. Som, and N. Sorde. 2004. Recent synthetic ion channels and pores. Tetrahedron 60:6405–6435.Google Scholar
  61. 56.
    Sakaki, Y., J. Mareda, and S. Matile. 2007. Ion channels and pores, made from scratch. Molecular Biosystems 3:658–666.Google Scholar
  62. 57.
    Song, L., M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouaux. 1996. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866.ADSGoogle Scholar
  63. 58.
    Gouaux, J. E., O. Braha, M. R. Hobaugh, L. Song, S. Cheley, C. Shustak, and H. Bayley. 1994. Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore. Proc. Natl. Acad. Sci. USA 91:12828–12831.ADSGoogle Scholar
  64. 59.
    Benz, R. 2004. Bacterial and eukaryotic porins: Structure, function, mechanism. Wiley-VCH, Weinheim, Germany.Google Scholar
  65. 60.
    Conlan, S., Y. Zhang, S. Cheley, and H. Bayley. 2000. Biochemical and biophysical characterization of OmpG: a monomeric porin. Biochemistry 39:11845–11854.Google Scholar
  66. 61.
    Menestrina, G. 2003. Pore-forming peptides and protein toxins. Taylor & Francis, London.Google Scholar
  67. 62.
    Borisenko, V., T. Lougheed, J. Hesse, E. Füreder-Kitzmüller, N. Fertig, J. C. Behrends, G. A. Woolley, and G. J. Schütz. 2003. Simultaneous optical and electrical recording of single gramicidin channels. Biophys. J. 84:612–622.ADSGoogle Scholar
  68. 63.
    Armstrong, K. M., E. P. Quigley, P. Quigley, D. S. Crumrine, and S. Cukierman. 2001. Covalently linked gramicidin channels: effects of linker hydrophobicity and alkaline metals on different stereoisomers. Biophys. J. 80:1810–1818.Google Scholar
  69. 64.
    Ghadiri, M. R., J. R. Granja, and L. K. Buehler. 1994. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369:301–304.ADSGoogle Scholar
  70. 65.
    Clark, T. D., K. Kobayashi, and M. R. Ghadiri. 1999. Covalent capture and stabilization of cylindrical beta-sheet peptide assemblies. Chem-Eur. J. 5:782–792.Google Scholar
  71. 66.
    Tokarz, M., B. Akerman, J. Olofsson, J. F. Joanny, P. Dommersnes, and O. Orwar. 2005. Single-file electrophoretic transport and counting of individual DNA molecules in surfactant nanotubes. Proc. Natl. Acad. Sci. USA 102:9127–9132.ADSGoogle Scholar
  72. 67.
    Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl, editors. 2008. Current protocols in molecular biology. Wiley, New York.Google Scholar
  73. 68.
    Xie, J., and P. G. Schultz. 2006. A chemical toolkit for proteins—an expanded genetic code. Nat. Rev. Mol. Cell. Biol. 7:775–782.Google Scholar
  74. 69.
    Muralidharan, V., and T. W. Muir. 2006. Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat. Methods 3:429–438.Google Scholar
  75. 70.
    Schwarzer, D., and P. A. Cole. 2005. Protein semisynthesis and expressed protein ligation: chasing a protein’s tail. Curr. Opin. Chem. Biol. 9:561–569.Google Scholar
  76. 71.
    Blake, S., T. Mayer, M. Mayer, and J. Yang. 2006. Monitoring chemical reactions by using ion-channel-forming peptides. ChemBioChem 7:433–435.Google Scholar
  77. 72.
    Macmillan, D. 2006. Evolving strategies for protein synthesis converge on native chemical ligation. Angew. Chem. Int. Ed. Engl. 45:7668–7672.Google Scholar
  78. 73.
    Chen, M., S. Khalid, M. S. Sansom, and H. Bayley. 2008. Outer membrane protein G: engineering a quiet pore for biosensing. Proc. Natl. Acad. Sci. USA 105:6272–6277.ADSGoogle Scholar
  79. 74.
    Merzlyak, P. G., M. F. P. Capistrano, A. Valeva, J. J. Kasianowicz, and O. V. Krasilnikov. 2005. Conductance and ion selectivity of a mesoscopic protein nanopore probed with cysteine scanning mutagenesis. Biophys. J. 89:3059–3070.Google Scholar
  80. 75a.
    Miedema, H., M. Vrouenraets, J. Wierenga, W. Meijberg, G. Robillard, and B. Eisenberg. 2007. A biological porin engineered into a molecular, nanofluidic diode. Nano Lett. 7:2886–2891.ADSGoogle Scholar
  81. 75b.
    Miedema, H., A. Meter-Arkema, J. Wierenga, J. Tang, B. Eisenberg, W. Nonner, H. Hektor, D. Gillespie, and W. Meijberg. 2004. Permeation properties of an engineered bacterial OmpF porin containing the EEEE-locus of Ca2+ channels. Biophys. J. 87:3137–3147.Google Scholar
  82. 76.
    Guan, X., L. Q. Gu, S. Cheley, O. Braha, and H. Bayley. 2005. Stochastic sensing of TNT with a genetically engineered pore. ChemBioChem 6:1875–1881.Google Scholar
  83. 77.
    Xie, H., O. Braha, L. Q. Gu, S. Cheley, and H. Bayley. 2005. Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. Chem. Biol. 12:109–120.Google Scholar
  84. 78.
    Howorka, S., S. Cheley, and H. Bayley. 2001. Sequence-specific detection of individual DNA-strands using engineered nanopores. Nat. Biotechnol. 19:636–639.Google Scholar
  85. 79.
    Howorka, S., L. Movileanu, X. Lu, M. Magnon, S. Cheley, O. Braha, and H. Bayley. 2000. A protein pore with a single polymer chain tethered within the lumen. J. Am. Chem. Soc. 122:2411–2416.Google Scholar
  86. 80.
    Movileanu, L., S. Howorka, O. Braha, and H. Bayley. 2000. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 18:1091–1095.Google Scholar
  87. 81.
    Gu, L. Q., O. Braha, S. Conlan, S. Cheley, and H. Bayley. 1999. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690.ADSGoogle Scholar
  88. 82.
    Wu, H. C., Y. Astier, G. Maglia, E. Mikhailova, and H. Bayley. 2007. Protein nanopores with covalently attached molecular adapters. J. Am. Chem. Soc. 129:16142–16148.Google Scholar
  89. 83.
    Litvinchuk, S., H. Tanaka, T. Miyatake, D. Pasini, T. Tanaka, G. Bollot, J. Mareda, and S. Matile. 2007. Synthetic pores with reactive signal amplifiers as artificial tongues. Nat. Mater. 6:576–580.Google Scholar
  90. 84.
    Montal, M., and P. Mueller. 1972. Formation of bimolecular membranes from lipid monolayers and study of their electric properties. Proc. Natl. Acad. Sci. USA 69:3561–3566.ADSGoogle Scholar
  91. 85.
    Holden, M. A., and H. Bayley. 2005. Direct introduction of single protein channels and pores into lipid bilayers. J. Am. Chem. Soc. 127:6502–6503.Google Scholar
  92. 86.
    Holden, M. A., L. Jayasinghe, O. Daltrop, A. Mason, and H. Bayley. 2006. Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording. Nat. Chem. Biol. 2:314–318.Google Scholar
  93. 87.
    Mayer, M., J. K. Kriebel, M. T. Tosteson, and G. M. Whitesides. 2003. Microfabricated Teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys. J. 85:2684–2695.Google Scholar
  94. 88.
    White, R. J., E. N. Ervin, T. Yang, X. Chen, S. Daniel, P. S. Cremer, and H. S. White. 2007. Single ion-channel recordings using glass nanopore membranes. J. Am. Chem. Soc. 129:11766–11775.Google Scholar
  95. 89.
    Shenoy, D. K., W. R. Barger, A. Singh, R. G. Panchal, M. Misakian, V. M. Stanford, and J. J. Kasianowicz. 2005. Functional reconstitution of protein ion channels into planar polymerizable phospholipid membranes. Nano Lett. 5:1181–1185.ADSGoogle Scholar
  96. 90.
    Jeon, T. J., N. Malmstadt, and J. J. Schmidt. 2006. Hydrogel-encapsulated lipid membranes. J. Am. Chem. Soc. 128:42–43.Google Scholar
  97. 91.
    Kang, X. F., S. Cheley, A. C. Rice-Ficht, and H. Bayley. 2007. A storable encapsulated bilayer chip containing a single protein nanopore. J. Am. Chem. Soc. 129:4701–4705.Google Scholar
  98. 92.
    Shim, J. W., and L. Q. Gu. 2007. Stochastic sensing on a modular chip containing a single-ion channel. Anal. Chem. 79:2207–2213.Google Scholar
  99. 93.
    Hromada, L. P., B. J. Nablo, J. J. Kasianowicz, M. A. Gaitan, and D. L. DeVoe. 2008. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip. Lab Chip 8:602–608.Google Scholar
  100. 94.
    Atanasov, V., N. Knorr, R. S. Duran, S. Ingebrandt, A. Offenhausser, W. Knoll, and I. Koper. 2005. Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys. J. 89:1780–1788.Google Scholar
  101. 95.
    Atanasov, V., P. P. Atanasova, I. K. Vockenroth, N. Knorr, and I. Koper. 2006. A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjug. Chem. 17: 631–637.Google Scholar
  102. 96.
    Andersson, M., H. M. Keizer, C. Zhu, D. Fine, A. Dodabalapur, and R. S. Duran. 2007. Detection of single ion channel activity on a chip using tethered bilayer membranes. Langmuir 23:2924–2927.Google Scholar
  103. 97.
    Drexler, J., and C. Steinem. 2003. Pore-suspending lipid bilayers on porous alumina investigated by electrical impedance spectroscopy. J. Phys. Chem. B 107:11245–11254.Google Scholar
  104. 98.
    Deme, B., and D. Marchal. 2005. Polymer-cushioned lipid bilayers in porous alumina. Eur. Biophys. J. Biophys. 34:170–179.Google Scholar
  105. 99.
    Holden, M. A., D. Needham, and H. Bayley. 2007. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129:8650–8655.Google Scholar
  106. 100.
    Hwang, W. L., M. Chen, B. Cronin, M. A. Holden, and H. Bayley. 2008. Asymmetric droplet interface bilayers. J. Am. Chem. Soc. 130:5878–5879.Google Scholar
  107. 101.
    Fleischer, R. L., P. B. Price, and R. M. Walker. 1975. Nuclear tracks in solids. Principles and applications. University of California Press, Berkeley, CA.Google Scholar
  108. 102., Gesellchaft fuer Schwerionenforschung, Materials Research, Darmstadt, Germany.
  109. 103.
    Harrell, C. C., S. B. Lee, and C. R. Martin. 2003. Synthetic single-nanopore and nanotube membranes. Anal. Chem. 75:6861–6867.Google Scholar
  110. 104.
    Spohr, R. 1983. Methods and device to generate a predetermined number of ion tracks. German Patent No. DE 2951376 C2; U. S. Patent No. 4369370.Google Scholar
  111. 105.
    Apel, P. Y., Y. E. Korchev, Z. Siwy, R. Spohr, and M. Yoshida. 2001. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Meth. B 184:337–346.ADSGoogle Scholar
  112. 106.
    Heins, E. A., Z. S. Siwy, L. A. Baker, and C. R. Martin. 2005. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett. 5:1824–1829.ADSGoogle Scholar
  113. 107.
    Bean, C., and W. DeSorbo. 1968. U.S. Patent No. 3770532.Google Scholar
  114. 108.
    Dobrev, D., J. Vetter, R. Neumann, and N. Angert. 2001. Conical etching and electrochemical metal replication of heavy-ion tracks in polymer foils. J. Vac. Sci. Technol. B 19:1385–1387.Google Scholar
  115. 109.
    Harrell, C. C., Z. S. Siwy, and C. R. Martin. 2006. Conical nanopore membranes: controlling the nanopore shape. Small 2:194–198.Google Scholar
  116. 110.
    Siwy, Z., P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. O. Voss. 2003. Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf. Sci. 532:1061–1066.ADSGoogle Scholar
  117. 111.
    Siwy, Z. S. 2006. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 16:735–746.Google Scholar
  118. 112.
    Siwy, Z., P. Apel, D. Dobrev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss. 2003. Ion transport through asymmetric nanopores prepared by ion track etching. Nucl. Instrum. Meth. B 208:143–148.ADSGoogle Scholar
  119. 113.
    Siwy, Z., D. Dobrev, R. Neumann, C. Trautmann, and K. Voss. 2003. Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Appl. Phys. A 76:781–785.ADSGoogle Scholar
  120. 114.
    Wharton, J. E., P. Jin, L. T. Sexton, L. P. Horne, S. A. Sherrill, W. K. Mino, and C. R. Martin. 2007. A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors. Small 3:1424–1430.Google Scholar
  121. 115.
    Park, S. R., H. B. Peng, and X. S. S. Ling. 2007. Fabrication of nanopores in silicon chips using feedback chemical etching. Small 3:116–119.Google Scholar
  122. 116.
    Li, J., D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko. 2001. Ion-beam sculpting at nanometre length scales. Nature 412:166–169.ADSGoogle Scholar
  123. 117.
    Wu, M. Y., D. Krapf, M. Zandbergen, H. Zandbergen, and P. E. Batson. 2005. Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Appl. Phys. Lett. 87:113106(1)–113106(3).ADSGoogle Scholar
  124. 118.
    Cai, Q., B. Ledden, E. Krueger, J. A. Golovchenko, and J. L. Li. 2006. Nanopore sculpting with noble gas ions. J. Appl. Phys. 100:024914(1)–024914(6).ADSGoogle Scholar
  125. 119.
    Stein, D. M., C. J. McMullan, J. L. Li, and J. A. Golovchenko. 2004. Feedback-controlled ion beam sculpting apparatus. Rev. Sci. Instrum. 75:900–905.ADSGoogle Scholar
  126. 120.
    Storm, A. J., J. H. Chen, X. S. Ling, H. W. Zandbergen, and C. Dekker. 2003. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2:537–540.ADSGoogle Scholar
  127. 121.
    Kim, M. J., M. Wanunu, D. C. Bell, and A. Meller. 2006. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 18:3149–3153.Google Scholar
  128. 122.
    Kim, M. J., B. McNally, K. Murata, and A. Meller. 2007. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18:205302(1)–205302(5).Google Scholar
  129. 123.
    Lo, C. J., T. Aref, and A. Bezryadin. 2006. Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17:3264–3267.ADSGoogle Scholar
  130. 124.
    Wei, C., A. J. Bard, and S. W. Feldberg. 1997. Current rectification at quartz nanopipet electrodes. Anal. Chem. 69:4627–4633.Google Scholar
  131. 125.
    Karhanek, M., J. T. Kemp, N. Pourmand, R. W. Davis, and C. D. Webb. 2005. Single DNA molecule detection using nanopipettes and nanoparticles. Nano Lett. 5:403–407.ADSGoogle Scholar
  132. 126.
    Umehara, S., N. Pourmand, C. D. Webb, R. W. Davis, K. Yasuda, and M. Karhanek. 2006. Current rectification with poly-L-lysine-coated quartz nanopipettes. Nano Lett. 6:2486–2492.ADSGoogle Scholar
  133. 127.
    Korchev, Y. E., C. L. Bashford, M. Milovanovic, I. Vodyanoy, and M. J. Lab. 1997. Scanning ion conductance microscopy of living cells. Biophys. J. 73:653–658.Google Scholar
  134. 128.
    Hansma, P. K., B. Drake, O. Marti, S. A. C. Gould, and C. B. Prater. 1989. The scanning ion-conductance microscope. Science 243:641–643.ADSGoogle Scholar
  135. 129.
    White, R. J., B. Zhang, S. Daniel, J. M. Tang, E. N. Ervin, P. S. Cremer, and H. S. White. 2006. Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support. Langmuir 22:10777–10783.Google Scholar
  136. 130.
    Schaffer, C. B., A. Brodeur, J. F. Garcia, and E. Mazur. 2001. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26:93–95.ADSGoogle Scholar
  137. 131.
    Uram, J. D., K. Ke, A. J. Hunt, and M. Mayer. 2006. Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. Angew. Chem. Int. Ed. Engl. 45:2281–2285.Google Scholar
  138. 132.
    Saleh, O. A., and L. L. Sohn. 2003. An artificial nanopore for molecular sensing. Nano Lett. 3:37–38.ADSGoogle Scholar
  139. 133.
    Grabarek, Z., and J. Gergely. 1990. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185:131–135.Google Scholar
  140. 134.
    Vlassiouk, I., and Z. S. Siwy. 2007. Nanofluidic diode. Nano Lett. 7:552–556.ADSGoogle Scholar
  141. 135.
    Siwy, Z., and A. Fulinski. 2002. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89:198103(1)–198103(4).ADSGoogle Scholar
  142. 136.
    Siwy, Z., and A. Fulinski. 2004. A nanodevice for rectification and pumping ions. Am. J. Phys. 72:567–574.ADSGoogle Scholar
  143. 137.
    Ali, M., B. Schiedt, K. Healy, R. Neumann, and A. Ensinger. 2008. Modifying the surface charge of single track-etched conical nanopores in polyimide. Nanotechnology 19:085713(1)–085713(6).ADSGoogle Scholar
  144. 138.
    Hanggi, P., and R. Bartussek. 1996. Brownian rectifiers: how to convert Brownian motion into directed transport. Lect. Notes Phys. 476:294–308.ADSGoogle Scholar
  145. 139.
    Astumian, R. D. 1997. Thermodynamics and kinetics of a Brownian motor. Science 276:917–922.Google Scholar
  146. 140a.
    Hanggi, P., and F. Marchesoni. 2009. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 81:387–442.Google Scholar
  147. 140b.
    Cervera, J., B. Schiedt, and P. Ramirez. 2005. A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett. 71:35–41.ADSGoogle Scholar
  148. 141a.
    Cervera, J., B. Schiedt, R. Neumann, S. Mafe, and P. Ramirez. 2006. Ionic conduction, rectification, and selectivity in single conical nanopores. J. Chem. Phys. 124:104706(1)–104706(9).ADSGoogle Scholar
  149. 141b.
    Kosinska, I. D., I. Goychuk, M. Kostur, G. Schmid, and P. Hanggi. 2008. Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Phys. Rev. E 77:031131(1)–031131(10).Google Scholar
  150. 142.
    Karnik, R., C. H. Duan, K. Castelino, H. Daiguji, and A. Majumdar. 2007. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7:547–551.ADSGoogle Scholar
  151. 143.
    Ulman, A. 1996. Formation and structure of self-assembled monolayers. Chem. Rev. 96:1533–1554.Google Scholar
  152. 144.
    Kobayashi, Y., and C. R. Martin. 1999. Highly sensitive methods for electroanalytical chemistry based on nanotubule membranes. Anal. Chem. 71:3665–3672.Google Scholar
  153. 145.
    Jirage, K. B., J. C. Hulteen, and C. R. Martin. 1999. Effect of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal. Chem. 71:4913–4918.Google Scholar
  154. 146.
    Martin, C. R., M. Nishizawa, K. Jirage, M. S. Kang, and S. B. Lee. 2001. Controlling ion-transport selectivity in gold nanotubule membranes. Adv. Mater. 13:1351–1362.Google Scholar
  155. 147.
    Jirage, K. B., J. C. Hulteen, and C. R. Martin. 1997. Nanotubule-based molecular-filtration membranes. Science 278:655–658.ADSGoogle Scholar
  156. 148.
    Siwy, Z., E. Heins, C. C. Harrell, P. Kohli, and C. R. Martin. 2004. Conical-nanotube ion-current rectifiers: the role of surface charge. J. Am. Chem. Soc. 126:10850–10851.Google Scholar
  157. 149.
    Kohli, P., C. C. Harrell, Z. Cao, R. Gasparac, W. Tan, and C. R. Martin. 2004. DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305:984–986.ADSGoogle Scholar
  158. 150.
    Lee, S. B., D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, and C. R. Martin. 2002. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296:2198–2200.ADSGoogle Scholar
  159. 151.
    Yu, S. F., S. B. Lee, and C. R. Martin. 2003. Electrophoretic protein transport in gold nanotube membranes. Anal. Chem. 75:1239–1244.Google Scholar
  160. 152.
    Chen, P., T. Mitsui, D. B. Farmer, J. Golovchenko, R. G. Gordon, and D. Branton. 2004. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4:1333–1337.ADSGoogle Scholar
  161. 153.
    Wanunu, M., and A. Meller. 2007. Chemically modified solid-state nanopores. Nano Lett. 7:1580–1585.ADSGoogle Scholar
  162. 154.
    Nilsson, J., J. R. I. Lee, T. V. Ratto, and S. E. Letant. 2006. Localized functionalization of single nanopores. Adv. Mater. 18:427–431.Google Scholar
  163. 155.
    Danelon, C., C. Santschi, J. Brugger, and H. Vogel. 2006. Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Langmuir 22:10711–10715.Google Scholar
  164. 156.
    Neher, E., and J. H. Steinbach. 1978. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol. 277:153–176.Google Scholar
  165. 157a.
    Fukushima, Y. 1982. Blocking kinetics of the anomalous potassium rectifier of tunicate egg studied by single channel recording. J. Physiol. 331:311–331.Google Scholar
  166. 157b.
    Blake, S., R. Capone, M. Mayer, and J. Yang. 2008. Chemically reactive derivatives of gramicidin A for developing ion channel-based nanoprobes. Bioconjugate Chem. 19:1614–1624.Google Scholar
  167. 158.
    Akeson, M., D. Branton, J. J. Kasianowicz, E. Brandin, and D. W. Deamer. 1999. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77:3227–3233.Google Scholar
  168. 159.
    Mathe, J., A. Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller. 2005. Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc. Natl. Acad. Sci. USA 102:12377–12382.ADSGoogle Scholar
  169. 160.
    Braha, O., L. Q. Gu, X. Lu, S. Cheley, and H. Bayley. 2000. Simultaneous stochastic sensing of divalent metal ions. Nat. Biotechnol. 18:1005–1007.Google Scholar
  170. 161.
    Harrell, C. C., Y. Choi, L. P. Horne, L. A. Baker, Z. S. Siwy, and C. R. Martin. 2006. Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir 22:10837–10843.Google Scholar
  171. 162.
    Han, A., G. Schurmann, G. Mondin, R. A. Bitterli, N. G. Hegelbach, N. F. de Rooij, and R. Staufer. 2006. Sensing protein molecules using nanofabricated pores. Appl. Phys. Lett. 88:093901(1)–093901(3).Google Scholar
  172. 163.
    Sexton, L. T., L. P. Horne, S. A. Sherrill, G. W. Bishop, L. A. Baker, and C. R. Martin. 2007. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 129:13144–13153.Google Scholar
  173. 164.
    Wolfe, A. J., M. M. Mohammad, S. Cheley, H. Bayley, and L. Movileanu. 2007. Catalyzing the translocation of polypeptides through attractive interactions. J. Am. Chem. Soc. 129:14034–14041.Google Scholar
  174. 165.
    Bezrukov, S. M., and J. J. Kasianowicz. 1997. The charge state of an ion channel controls neutral polymer entry into its pore. Eur. Biophys. J. Biophy. 26:471–476.Google Scholar
  175. 166.
    Robertson, J. W. F., C. G. Rodrigues, V. M. Stanford, K. A. Rubinson, O. V. Krasilnikov, and J. J. Kasianowicz. 2007. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc. Natl. Acad. Sci. USA 104:8207–8211.ADSGoogle Scholar
  176. 167.
    Vercoutere, W., S. Winters-Hilt, H. Olsen, D. Deamer, D. Haussler, and M. Akeson. 2001. Rapid discrimination among individual DNA hairpin molecules at single- nucleotide resolution using an ion channel. Nat. Biotechnol. 19:248–252.Google Scholar
  177. 168.
    Dudko, O. K., J. Mathé, A. Szabo, A. Meller, and G. Hummer. 2007. Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys. J. 92:4188–4195.ADSGoogle Scholar
  178. 169.
    Howorka, S., and H. Bayley. 2002. Probing distance and electrical potential within a protein pore with tethered DNA. Biophys. J. 83:3202–3210.ADSGoogle Scholar
  179. 170.
    Goodrich, C. P., S. Kirmizialtin, B. M. Huyghues-Despointes, A. Zhu, J. M. Scholtz, D. E. Makarov, and L. Movileanu. 2007. Single-molecule electrophoresis of beta-hairpin peptides by electrical recordings and Langevin dynamics simulations. J. Phys. Chem. B 111:3332–3335.Google Scholar
  180. 171.
    Oukhaled, G., J. Mathé, A. L. Biance, L. Bacri, J. M. Betton, D. Lairez, J. Pelta, and L. Auvray. 2007. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98:158101(1)–158101(4).ADSGoogle Scholar
  181. 172.
    Kasianowicz, J. J., S. E. Henrickson, H. H. Weetall, and B. Robertson. 2001. Simultaneous multianalyte detection with a nanometer-scale pore. Anal. Chem. 73:2268–2272.Google Scholar
  182. 173.
    Mathe, J., H. Visram, V. Viasnoff, Y. Rabin, and A. Meller. 2004. Nanopore unzipping of individual DNA hairpin molecules. Biophys. J. 87:3205–3212.ADSGoogle Scholar
  183. 174.
    Nakane, J., M. Wiggin, and A. Marziali. 2004. A nanosensor for transmembrane capture and identification of single nucleic Acid molecules. Biophys. J. 87:615–621.ADSGoogle Scholar
  184. 175.
    Martin, C. R., and Z. S. Siwy. 2007. Learning nature’s way: Biosensing with synthetic nanopores. Science 317:331–332.Google Scholar
  185. 176.
    Iqbal, S. M., D. Akin, and R. Bashir. 2007. Solid-state nanopore channels with DNA selectivity. Nat. Nanotechnol. 2:243–248.ADSGoogle Scholar
  186. 177.
    Cheley, S., L. Q. Gu, and H. Bayley. 2002. Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem. Biol. 9:829–838.Google Scholar
  187. 178a.
    Braha, O., J. Webb, L. Q. Gu, K. Kim, and H. Bayley. 2005. Carriers versus adapters in stochastic sensing. ChemPhysChem 5:889–892.Google Scholar
  188. 178b.
    Astier, Y., O.Braha, and H. Bayley. 2006. Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5’-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc. 128:1705–1710.Google Scholar
  189. 178c.
    Clarke, J., H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley. 2009. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. DOI: 10.1038/nnano.2009.12 </>
  190. 179.
    Kasianowicz, J. J., D. L. Burden, L. C. Han, S. Cheley, and H. Bayley. 1999. Genetically engineered metal ion binding sites on the outside of a channel’s transmembrane beta-barrel. Biophys. J. 76:837–845.Google Scholar
  191. 180a.
    Siwy, Z., L. Trofin, P. Kohli, L. A. Baker, C. Trautmann, and C. R. Martin. 2005. Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127:5000–5001.Google Scholar
  192. 180b.
    Umehara, S., M. Karhanek, R. W. Davis, and N. Pourmand. 2009. Label-free biosensing with functionalized nanopipette probes. Proc. Natl. Acad. Sci. U S A. 106:4611–4616.Google Scholar
  193. 180c.
    Ali, M., B. Yameen, R. Neumann, W. Ensinger, W. Knoll, and W. Azzaroni. 2008. Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. facile incorporation of biorecognition elements into nanoconfined Geometries. J. Am. Chem. Soc. 130:16351–16357.Google Scholar
  194. 180d.
    Ali, M., V. Bayer, B. Schiedt, R. Neumann, and A. Ensinger. 2008. Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules. Nanotechnology. 19:485711–485719.Google Scholar
  195. 181.
    Wang, J., and C. R. Martin. 2008. A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. Nanomedicine 3:13–20.Google Scholar
  196. 182.
    Shin, S. H., T. Luchian, S. Cheley, O. Braha, and H. Bayley. 2002. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. Angew. Chem. Int. Ed. Engl. 41:3707–3709.Google Scholar
  197. 183.
    Saleh, O. A., and L. L. Sohn. 2003. Direct detection of antibody-antigen binding using an on-chip artificial pore. Proc. Natl. Acad. Sci. USA 100:820–824.ADSGoogle Scholar
  198. 184.
    Fologea, D., B. Ledden, D. S. McNabb, and J. Li. 2007. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91:053901(1)–053901(3).ADSGoogle Scholar
  199. 185.
    Halverson, K. M., R. G. Panchal, T. L. Nguyen, R. Gussio, S. F. Little, M. Misakian, S. Bavari, and J. J. Kasianowicz. 2005. Anthrax biosensor, protective antigen ion channel asymmetric blockade. J. Biol. Chem. 280:34056–34062.Google Scholar
  200. 186.
    Jung, Y., H. Bayley, and L. Movileanu. 2006. Temperature-responsive protein pores. J. Am. Chem. Soc. 128:15332–15340.Google Scholar
  201. 187.
    Shin, S. H., and H. Bayley. 2005. Stepwise growth of a single polymer chain. J. Am. Chem. Soc. 127:10462–10463.Google Scholar
  202. 188a.
    Capone, R., S. Blake, M. R. Restrepo, J. Yang, and M. Mayer. 2007. Designing nanosensors based on charged derivatives of gramicidin A. J. Am. Chem. Soc. 129:9737–9745.Google Scholar
  203. 188b.
    Blake, S., R. Capone, M. Mayer, and J. Yang. 2008. Chemically reactive derivatives of gramicidin A for developing ion channel-based nanoprobes. Bioconjugate Chem. 19:1614–1624.Google Scholar
  204. 189.
    Gu, L. Q., S. Cheley, and H. Bayley. 2003. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proc. Natl. Acad. Sci. USA 100:15498–15503.ADSGoogle Scholar
  205. 190.
    Ashkenasy, N., J. Sanchez-Quesada, H. Bayley, and M. R. Ghadiri. 2005. Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Angew. Chem. Int. Ed. Engl. 44: 1401–1404.Google Scholar
  206. 191.
    Gu, L. Q., S. Cheley, and H. Bayley. 2001. Capture of a single molecule in a nanocavity. Science 291:636–640.ADSGoogle Scholar
  207. 192.
    Mohammad, M. M., S. Prakash, A. Matouschek, and L. Movileanu. 2008. Controlling a single protein in a nanopore through electrostatic traps. J. Am. Chem. Soc. 130:4081–4088.Google Scholar
  208. 193.
    Wong, C. T., and M. Muthukumar. 2007. Polymer capture by electro-osmotic flow of oppositely charged nanopores. J. Chem. Phys. 126:164903(1)–164903(6).ADSGoogle Scholar
  209. 194.
    Kovarik, M. L., and S. Jacobson, C. 2008. Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles. Anal. Chem. 80:657–664.Google Scholar
  210. 195.
    Sanchez-Quesada, J., A. Saghatelian, S. Cheley, H. Bayley, and M. R. Ghadiri. 2004. Single DNA rotaxanes of a transmembrane pore protein. Angew. Chem. Int. Ed. Engl. 43:3063–3067.Google Scholar
  211. 196.
    Kasianowicz, J. J. 2004. Nanopores—flossing with DNA. Nat. Mater. 3:355–356.ADSGoogle Scholar
  212. 197a.
    Keyser, U. F., B. N. Koeleman, S. van Dorp, D. Krapf, R. M. M. Smeets, S. G. Lemay, N. H. Dekker, and C. Dekker. 2006. Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2:473–477.Google Scholar
  213. 197b.
    Trepagnier, E. H., A. Radenovic, D. Sivak, P. Geissler, and J. Liphardt. 2007. Controlling DNA capture and propagation through artificial nanopores. Nano Lett. 7:2824–2830.Google Scholar
  214. 197c.
    Gershow, M., and J. A. Golovchenko. 2007. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotech. 2:775–779.Google Scholar
  215. 198.
    Sung, W., and P. J. Park. 1996. Polymer translocation through a pore in a membrane. Phys. Rev. Lett. 77:783–786.ADSGoogle Scholar
  216. 199.
    Chuang, J., Y. Kantor, and M. Kardar. 2001. Anomalous dynamics of translocation. Phys Rev E 65:011802(1)–011802(8).ADSGoogle Scholar
  217. 200.
    Lubensky, D. K., and D. R. Nelson. 1999. Driven polymer translocation through a narrow pore. Biophys. J. 77:1824–1838.ADSGoogle Scholar
  218. 201.
    Muthukumar, M. 2203. Polymer escape through a nanopore. J. Chem. Phys. 118:5174.Google Scholar
  219. 202.
    Storm, A. J., C. Storm, J. Chen, H. Zandbergen, J. F. Joanny, and C. Dekker. 2005. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5:1193–1197.ADSGoogle Scholar
  220. 203.
    Sikorski, A., and P. Romiszowski. 2005. Computer simulation of polypeptide translocation through a nanopore. J. Mol. Model. 11:379–384.Google Scholar
  221. 204.
    Heng, J. B., C. Ho, T. Kim, R. Timp, A. Aksimentiev, Y. V. Grinkova, S. Sligar, K. Schulten, and G. Timp. 2004. Sizing DNA using a nanometer-diameter pore. Biophys. J. 87:2905–2911.ADSGoogle Scholar
  222. 205.
    Martin, H., H. Kinns, N. Mitchell, Y. Astier, R. Madathil, and S. Howorka. 2007. Nanoscale protein pores modified with PAMAM dendrimers. J. Am. Chem. Soc. 129:9640–9649.Google Scholar
  223. 206.
    Rousselet, J., L. Salome, A. Ajdari, and J. Prost. 1994. Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370:446–448.ADSGoogle Scholar
  224. 207.
    Fu, J. P., P. Mao, and J. Y. Han. 2005. Nanofilter array chip for fast gel-free biomolecule separation. Appl. Phys. Lett. 87:263902(1)–263902(3).ADSGoogle Scholar
  225. 208.
    Fu, J. P., R. B. Schoch, A. L. Stevens, S. R. Tannenbaum, and J. Y. Han. 2007. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotechnol. 2:121–128.ADSGoogle Scholar
  226. 209.
    Han, J., S. W. Turner, and H. G. Craighead. 1999. Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys. Rev. Lett. 83:1688–1691.ADSGoogle Scholar
  227. 210.
    Huang, L. R., P. Silberzan, J. O. Tegenfeldt, E. C. Cox, J. C. Sturm, R. H. Austin, and H. Craighead. 2002. Role of molecular size in ratchet fractionation. Phys. Rev. Lett. 89:178301(1)–178301(4).ADSGoogle Scholar
  228. 211.
    Astumian, R. D., and P. Hanggi. 2002. Brownian motors. Phys. Today 55:33–39.Google Scholar
  229. 212.
    Chou, C. F., O. Bakajin, S. W. P. Turner, T. A. J. Duke, S. S. Chan, E. C. Cox, H. G. Craighead, and R. H. Austin. 1999. Sorting by diffusion: an asymmetric obstacle course for continuous molecular separation. Proc. Natl. Acad. Sci. USA 96:13762–13765.ADSGoogle Scholar
  230. 213.
    van Oudenaarden, A., and S. G. Boxer. 1999. Brownian ratchets: molecular separations in lipid bilayers supported on patterned arrays. Science 285:1046–1048.Google Scholar
  231. 214.
    Han, J. Y., J. P. Fu, and R. B. Schoch. 2008. Molecular sieving using nanofilters: past, present and future. Lab Chip 8:23–33.Google Scholar
  232. 215.
    Chun, K. Y., and P. Stroeve. 2002. Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18:4653–4658.Google Scholar
  233. 216.
    Ku, J. R., and P. Stroeve. 2004. Protein diffusion in charged nanotubes: “On-Off” behavior of molecular transport. Langmuir 20:2030–2032.Google Scholar
  234. 217.
    Saksena, S., and A. L. Zydney. 1994. Effect of solution pH and ionic-strength on the separation of albumin from immunoglobulins (Igg) by selective filtration. Biotechnol. Bioeng. 43:960–968.Google Scholar
  235. 218.
    Pujar, N. S., and A. L. Zydney. 1998. Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. J. Chromatogr. A 796:229–238.Google Scholar
  236. 219.
    Burns, D. B., and A. L. Zydney. 2000. Buffer effects on the zeta potential of ultrafiltration membranes. J. Membrane Sci. 172:39–48.Google Scholar
  237. 220.
    Ramirez, P., A. Alcaraz, and S. Mafe. 2003. Uphill transport of amino acids through fixed charged membranes. In Encyclopedia of surface and colloid science. A. Hubbard, editor. Marcel Dekker, New York, pp. 1–12.Google Scholar
  238. 221.
    Ku, J. R., S. M. Lai, N. Ileri, P. Ramirez, S. Mafe, and P. Stroeve. 2007. pH and ionic strength effects on aminmino acid transport through Au-nanotubule membranes charged with self-assembled monolayers. J. Phys. Chem. C 111:2965–2973.Google Scholar
  239. 222.
    Savariar, E. N., K. Krishnamoorthy, and S. Thayumanavan. 2008. Molecular discrimination inside polymer nanotubules. Nat. Nanotechnol. 3:112–117.ADSGoogle Scholar
  240. 223.
    Mitchell, D. T., S. B. Lee, L. Trofin, N. C. Li, T. K. Nevanen, H. Soderlund, and C. R. Martin. 2002. Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc. 124:11864–11865.Google Scholar
  241. 224.
    Volkmuth, W. D., and R. H. Austin. 1992. DNA electrophoresis in microlithographic arrays. Nature 358:600–602.ADSGoogle Scholar
  242. 225.
    Striemer, C. C., T. R. Gaborski, J. L. McGrath, and P. M. Fauchet. 2007. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445:749–753.ADSGoogle Scholar
  243. 226.
    Yu, S. F., S. B. Lee, M. Kang, and C. R. Martin. 2001. Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes. Nano Lett. 1:495–498.ADSGoogle Scholar
  244. 227.
    Biesheuvel, P. M., P. Stroeve, and P. A. Barneveld. 2004. Effect of protein adsorption and ionic strength on the equilibrium partition coefficient of ionizable macromolecules in charged nanopores. J. Phys. Chem. B 108:17660–17665.Google Scholar
  245. 228.
    Schoch, R. B., and P. Renaud. 2005. Ion transport through nanoslits dominated by the effective surface charge. Appl. Phys. Lett. 86:25311(1)–253111(4).Google Scholar
  246. 229.
    Lakshmi, B. B., and C. R. Martin. 1997. Enantioseparation using apoenzymes immobilized in a porous polymeric membrane. Nature 388:758–760.ADSGoogle Scholar
  247. 230.
    Kuo, T. C., D. M. Cannon, Y. N. Chen, J. J. Tulock, M. A. Shannon, J. V. Sweedler, and P. W. Bohn. 2003. Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal. Chem. 75:1861–1867.Google Scholar
  248. 231.
    Flachsbart, B. R., K. Wong, J. M. Iannacone, E. N. Abante, R. L. Vlach, P. A. Rauchfuss, P. W. Bohn, J. V. Sweedler, and M. A. Shannon. 2006. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6:667–674.Google Scholar
  249. 232.
    Beck, R. E., and J. S. Schultz. 1970. Hindered diffusion in microporous membranes with known pore geometry. Science 170:1302–1305.ADSGoogle Scholar
  250. 233.
    Steinle, E. D., D. T. Mitchell, M. Wirtz, S. B. Lee, V. Y. Young, and C. R. Martin. 2002. Ion channel mimetic micropore and nanotube membrane sensors. Anal. Chem. 74:2416–2422.Google Scholar
  251. 234.
    Lee, S. B., and C. R. Martin. 2002. Electromodulated molecular transport in gold-nanotube membranes. J. Am. Chem. Soc. 124:11850–11851.Google Scholar
  252. 235.
    Martin, C. R. 1994. Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966.ADSGoogle Scholar
  253. 236.
    Martin, C. R., M. Nishizawa, K. Jirage, and M. Kang. 2001. Investigations of the transport properties of gold nanotubule membranes. J. Phys. Chem. B 105:1925–1934.Google Scholar
  254. 237.
    Kang, M. S., and C. R. Martin. 2001. Investigations of potential-dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method. Langmuir 17:2753–2759.Google Scholar
  255. 238.
    Lee, S. B., and C. R. Martin. 2001. pH-switchable, ion-permselective gold nanotubule membrane based on chemisorbed cysteine. Anal. Chem. 73:768–775.Google Scholar
  256. 239.
    Kittilsland, G., G. Stemme, and B. Norden. 1990. A submicron particle filter in silicon. Sensor. Actuat. A Phys. 23:904–907.Google Scholar
  257. 240.
    Desai, T. A., D. Hansford, and M. Ferrari. 1999. Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J. Membrane Sci. 159:221–231.Google Scholar
  258. 241.
    Nishizawa, M., V. P. Menon, and C. R. Martin. 1995. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science. 268:700–702ADSGoogle Scholar
  259. 242.
    Plecis, A., R. B. Schoch, and P. Renaud. 2005. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 5:1147–1155.ADSGoogle Scholar
  260. 243.
    Stein, D., M. Kruithof, and C. Dekker. 2004. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93:035901(1)–035901(4).ADSGoogle Scholar
  261. 244.
    Gu, L. Q., M. Dalla Serra, J. B. Vincent, G. Vigh, S. Cheley, O. Braha, and H. Bayley. 2000. Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters. Proc. Natl. Acad. Sci. USA 97:3959–3964.ADSGoogle Scholar
  262. 245a.
    Alcaraz, A., E. M. Nestorovich, M. Aguilella-Arzo, V. M. Aguilella, and S. M. Bezrukov. 2004. Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF. Biophys. J. 87:943–957.Google Scholar
  263. 245b.
    Schoch, R. B., J. Han, and P. Renaud. 2008. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80:839–883.Google Scholar
  264. 246.
    Liu, Y. L., M. Q. Zhao, D. E. Bergbreiter, and R. M. Crooks. 1997. pH-switchable, ultrathin permselective membranes prepared from multilayer polymer composites. J. Am. Chem. Soc. 119: 8720–8721.Google Scholar
  265. 247a.
    van der Heyden, F. H. J., D. Stein, K. Besteman, S. G. Lemay, and C. Dekker. 2006. Charge inversion at high ionic strength studied by streaming currents. Phys. Rev. Lett. 96:224502–224505.ADSGoogle Scholar
  266. 247b.
    Alcaraz, A., E. M. Nestorovich, M. L. Lopez, E. Garcia-Gimenez, S. M. Bezrukov, and V. M. Aguilella. 2009. Diffusion, exclusion, and specific binding in a large channel: A study of OmpF selectivity inversion. Biophys. J. 96:56–66.Google Scholar
  267. 247c.
    He, Y., D. Gillespie, I. Boda, I. Vlassiouk, R. S. Eisenberg, and Z. Siwy. 2009. Tuning transport properties of nanofluidic devices with local charge inversion. J. Am. Chem. Soc. 131:5194–5202.Google Scholar
  268. 248.
    Shklovskii, B. I. 1999. Screening of a macroion by multivalent ions: correlation-induced inversion of charge. Phys. Rev. E 60:5802–5811.ADSGoogle Scholar
  269. 249.
    Daiguji, H., Y. Oka, and K. Shirono. 2005. Nanofluidic diode and bipolar transistor. Nano Lett. 5: 2274–2280.ADSGoogle Scholar
  270. 250.
    Alcaraz, A., P. Ramirez, E. Garcia-Gimenez, M. L. Lopez, A. Andrio, and V. M. Aguilella. 2006. A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel. J. Phys. Chem. B 110:21205–21209.Google Scholar
  271. 251.
    Schasfoort, R. B. M., S. Schlautmann, L. Hendrikse, and A. van den Berg. 1999. Field-effect flow control for microfabricated fluidic networks. Science 286:942–945.Google Scholar
  272. 252.
    Fan, R., M. Yue, R. Karnik, A. Majumdar, and P. D. Yang. 2005. Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys. Rev. Lett. 95:086607(1)–086607(4).ADSGoogle Scholar
  273. 253.
    Fan, R., Y. Y. Wu, D. Y. Li, M. Yue, A. Majumdar, and P. D. Yang. 2003. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc. 125:5254–5255.Google Scholar
  274. 254.
    Karnik, R., R. Fan, M. Yue, D. Y. Li, P. D. Yang, and A. Majumdar. 2005. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5:943–948.ADSGoogle Scholar
  275. 255a.
    Karnik, R., K. Castelino, and A. Majumdar. 2006. Field-effect control of protein transport in a nanofluidic transistor circuit. Appl. Phys. Lett. 88:123114(1)–123114(3).ADSGoogle Scholar
  276. 255b.
    Kalman, E. B., O. Sudre, I. Vlassiouk, and Z. Siwy. 2009. Control of ionic transport through gated single conical nanopores. Anal Bioanal Chem. DOI: 10.1007/s00216-008-2545-3Google Scholar
  277. 256.
    Kalman, E. B., I. Vlassiouk, and Z. S. Siwy. 2008. Nanofluidic bipolar transistors. Adv. Mater. 20:293–297.Google Scholar
  278. 257.
    Ito, T., L. Sun, and R. M. Crooks. 2003. Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based coulter counter. Anal. Chem. 75:2399–2406.Google Scholar
  279. 258.
    Hinds, B. J., N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas. 2004. Aligned multiwalled carbon nanotube membranes. Science 303:62–65.ADSGoogle Scholar
  280. 259.
    Holt, J. K., H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin. 2005. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037.ADSGoogle Scholar
  281. 260.
    Wan, R., J. Li, H. Lu, and H. Fang. 2005. Controllable water channel gating of nanometer dimensions. J. Am. Chem. Soc. 127:7166–7170.Google Scholar
  282. 261.
    Rasaiah, J. C., S. Garde, and G. Hummer. 2008. Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu. Rev. Phys. Chem. 59:713–740.ADSGoogle Scholar
  283. 262.
    Fornasiero, F., H. G. Park, J. K. Holt, M. Stadermann, C. P. Grigoropoulos, A. Noy, and O. Bakajin. 2008. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. USA 105:17250–17255.ADSGoogle Scholar
  284. 263.
    Yeh, I. C., and G. Hummer. 2004. Nucleic acid transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. USA 101:12177–12182.ADSGoogle Scholar
  285. 264.
    Blow, N. 2008. DNA sequencing: generation next-next. Nat. Methods 5:267–272.Google Scholar
  286. 265.
    Hemmler, R., G. Bose, R. Wagner, and R. Peters. 2005. Nanopore unitary permeability measured by electrochemical and optical single transporter recording. Biophys. J. 88:4000–4007.Google Scholar
  287. 266.
    Bruckbauer, A., P. James, D. Zhou, J. W. Yoon, D. Excell, Y. Korchev, R. Jones, and D. Klenerman. 2007. Nanopipette delivery of individual molecules to cellular compartments for single-molecule fluorescence tracking. Biophys. J. 93:3120–3131.ADSGoogle Scholar
  288. 267.
    Zwolak, M., and M. Di Ventra. 2005. Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5:421–424.ADSGoogle Scholar
  289. 268.
    Lagerqvist, J., M. Zwolak, and M. Di Ventra. 2007. Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. Biophys. J. 93:2384–2390.ADSGoogle Scholar
  290. 269.
    Sigalov, G., J. Comer, G. Timp, and A. Aksmentiev. 2008. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 8:56–63.ADSGoogle Scholar
  291. 270a.
    Liang, X. G., and S. Y. Chou. 2008. Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett. 8:1472–1476.ADSGoogle Scholar
  292. 270b.
    Fischbein, M. D., and M. Drndic. 2007. Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett. 7:1329–1337.Google Scholar
  293. 270c.
    Tsutsui, M., M. Taniguchi, and T. Kawai. 2009. Transverse field effects on DNA-sized particle dynamics. Nano Lett. 9:1659–1662.Google Scholar
  294. 271.
    Su, X. D., and A. A. Berlin. 2006. Method and apparatus for nucleic acid sequencing and identification. U.S. Patent No. 2006019247.Google Scholar
  295. 272.
    Smeets, R. M., U. F. Keyser, N. H. Dekker, and C. Dekker. 2008. Noise in solid-state nanopores. Proc. Natl. Acad. Sci. USA 105:417–421.ADSGoogle Scholar
  296. 273.
    Uram, J. D., K. Ke, and M. Mayer. 2008. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano 2:857–872.Google Scholar
  297. 274.
    Vlassiouk, I., S. Smirnov, and Z. Siwy. 2008. Nanofluidic ionic diodes. comparison of analytical and numerical solutions. ACS Nano. 2:1589–1602.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Stefan Howorka
    • 1
  • Zuzanna Siwy
    • 2
  1. 1.Department of ChemistryUniversity College LondonLondonUK
  2. 2.Department of Physics and Astronomy, University of California at Irvine, 210G Rowland Hall, Mail Code: 4575IrvineUSA

Personalised recommendations