Single-Molecule Studies of Nucleic Acid Interactions Using Nanopores

  • Meni Wanunu
  • Gautam V. Soni
  • Amit Meller


This chapter presents biophysical studies of single biopolymers using nanopores. Starting from the fundamental process of voltage-driven biopolymer translocation, the understanding of which is a prerequisite for virtually all nanopore applications, the chapter describes recent experiments that resolve nucleic acid structure and its interaction with enzymes, such as exonucleases and polymerases. It then outlines progress made with solid-state nanopores fabricated in ultrathin membranes and discusses experiments describing biopolymer dynamics in synthetic pores. The chapter concludes with a discussion on some of the main challenges facing nanopore technology, as well as on some of the future prospects associated with nanopore-based tools.


Klenow Fragment Translocation Time Longe Dwell Time Trans Side Current Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akeson, M., D. Branton, J. Kasianowicz, E. Brandin, and D. Deamer. 1999. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77:3227–3233.CrossRefGoogle Scholar
  2. Aksimentiev, A., and K. Schulten. 2005. Imaging alpha-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88(6):3745–3761.CrossRefGoogle Scholar
  3. Arnott, S., R. Chandrasekaran, and A. G. W. Leslie. 1976. Structure of the single-stranded polyribonucleotide polycytidylic acid. J. Mol. Biol. 106:735–748.CrossRefGoogle Scholar
  4. Astier, Y., O. Braha, and H. Bayley. 2006. Toward single molecule DNA sequencing: Direct identification of ribonucleoside and deoxyribonucleoside 5-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc. 128:1705–1710.CrossRefGoogle Scholar
  5. Bantel, H., B. Sinha, W. Domschke, G. Peters, K. Schulze-Osthoff, and R. U. Jänicke. 2001. α-Toxin is a mediator of Staphylococcus aureus–induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J. Cell Biol. 155:637–647.CrossRefGoogle Scholar
  6. Bayley, H., and P. Cremer. 2001. Stochastic sensors inspired by biology. Nature 413:226–230.ADSCrossRefGoogle Scholar
  7. Benner, S., R. J. A. Chen, N. A. Wilson, R. Abu-Shumays, N. Hurt, K. R. Lieberman, D. W. Deamer, W. B. Dunbar, and M. Akeson. 2007. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat. Nanotechnol. 2(11):718–724.ADSCrossRefGoogle Scholar
  8. Bezrukov, S. M., I. Vodyanoy, and V. A. Parsegian. 1994. Counting polymers moving through a single ion channel. Nature 370:279–281.ADSCrossRefGoogle Scholar
  9. Bhakdi, S., and J. Tranum-Jensen. 1991. Microbiol. Rev. 55:733–751.Google Scholar
  10. Bustamante, J. O., H. Oberleithner, J. A. Hanover, and A. Liepins. 1995. Patch clamp detection of transcription factor translocation along the nuclear pore complex. J. Memb. Biol. 146:253–261.Google Scholar
  11. Chang, H., F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir. 2004. DNA mediated fluctuations in ionic current through silicon oxide nano-channels. Nano Lett. 4(8):1551–1556.ADSCrossRefGoogle Scholar
  12. Chen, P., J. J. Gu, E. Brandin, Y. R. Kim, Q. Wang, and D. Branton. 2004a. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 4(11):2293–2298.ADSCrossRefGoogle Scholar
  13. Chen, P., T. Mitsui, D. B. Farmer, J. Golovchenko, R. G. Gordon, and D. Branton. 2004b. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4(7):1333–1337.ADSCrossRefGoogle Scholar
  14. Cockroft, S. L., J. Chu, M. Amorin, and M. R. Ghadiri. 2008. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130(3):818–+.CrossRefGoogle Scholar
  15. Coulter, W. H. 1953. Means for counting particles suspended in a fluid US. 2,656,508.Google Scholar
  16. Deamer, D. W., and M. Akeson. 2000. Nanopores and nucleic acids: Prospects for ultrarapid sequencing. Tibtech 18:147–150.CrossRefGoogle Scholar
  17. Deamer, D. W., and D. Branton. 2002. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35:817–825.CrossRefGoogle Scholar
  18. DeBlois, R. W., and C. P. Bean. 1970. Counting and sizing of submicron particles by the resistive pulse technique. Rev. Sci. Instrum. 41:909–915.ADSCrossRefGoogle Scholar
  19. Dekker, C. 2007. Solid-state nanopores. Nat. Nanotechnol. 2(4):209–215.MathSciNetADSCrossRefGoogle Scholar
  20. Driselkelmann, B. 1994. Translocation of DNA across bacterial membranes. Microbiol. Rev. 58:293–316.Google Scholar
  21. Dudko, O. K., J. Mathe, A. Szabo, A. Meller, and G. Hummer. 2007. Extracting kinetics from single-molecule force spectroscopy: Nanopore unzipping of DNA hairpins. Biophys. J. 92(12):4188–4195.ADSCrossRefGoogle Scholar
  22. Dudko, O.K., G. Hummer, and A. Szabo. 2008. Theory, analysis and interpretation of single-molecule force spectroscopy experiments. Proc. Natl. Acad. Sci. 105:15755–15760.Google Scholar
  23. Evans, E. 2001. Probing the relation between force-lifetime and chemistry in single molecule bonds. Annu. Rev. Biophys. Biomol. Struct. 30:105–128.CrossRefGoogle Scholar
  24. Evans, E., K. Ritchie, and R. Merkel. 1995. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68(6):2580–2587.ADSCrossRefGoogle Scholar
  25. Fologea, D., E. Brandin, J. Uplinger, D. Branton, and J. Li. 2007. DNA conformation and base number simultaneously determined in a nanopore. Electrophoresis 28(18):3186–3192.CrossRefGoogle Scholar
  26. Fologea, D., J. Uplinger, B. Thomas, D. S. McNabb, and J. L. Li. 2005. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5(9):1734–1737.ADSCrossRefGoogle Scholar
  27. Gershow, M., and J. A. Golovchenko. 2007. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotechnol. 2(12):775–779.ADSCrossRefGoogle Scholar
  28. Gouax, J. E., O. Braha, M. R. Hobaugh, L. Song, S. Cheley, C. Shustak, and H. Bayley. 1994. Subunit stoichiometry of staphylococcal α-hemolysin in crystals and membranes: A heptameric transmembrane pore. Proc. Natl. Acad. Sci. USA. 91:12828–12831.ADSCrossRefGoogle Scholar
  29. Grayson, P., L. Han, T. Winther, and R. Phillips. 2007. Real-time observations of single bacteriophage lambda DNA ejections in vitro. Proc. Natl. Acad. Sci. USA. 104(37):14652–14657.ADSCrossRefGoogle Scholar
  30. Guan, X. Y., L. Q. Gu, S. Cheley, O. Braha, and H. Bayley. 2005. Stochastic sensing of TNT with a genetically engineered pore. Chembiochem 6(10):1875–1881.CrossRefGoogle Scholar
  31. Hanss, B., E. Leal-Pinto, L. A. Bruggeman, T. D. Copeland, and P. E. Klotman. 1998. Identification and characterization of a cell membrane nucleic acid channel. Proc. Natl. Acad. Sci. USA. 95:1921–1926.ADSCrossRefGoogle Scholar
  32. He, J., L. Lin, P. Zhang, and S. Lindsay. 2007. Identification of DNA basepairing via tunnel-current decay. Nano Lett. 7(12):3854–3858.ADSCrossRefGoogle Scholar
  33. Healy, K. 2007. Nanopore-based single-molecule DNA analysis. Nanomedicine 2(4):459–481.CrossRefGoogle Scholar
  34. Hemmler, R., G. Bose, R. Wagner, and R. Peters. 2005. Nanopore unitary permeability measured by electrochemical and optical single transporter recording. Biophys. J. 88(6):4000–4007.CrossRefGoogle Scholar
  35. Heng, J. B., C. Ho, T. Kim, R. Timp, A. Aksimentiev, Y. V. Grinkova, S. Sligar, K. Schulten, and G. Timp. 2004. Sizing DNA using a nanometer-diameter pore. Biophys. J. 87(4):2905–2911.ADSCrossRefGoogle Scholar
  36. Henrickson, S. E., M. Misakian, B. Robertson, and J. J. Kasianowicz. 2000. Driven DNA transport into an asymmetric nanometer scale pore. Phys. Rev. Lett. 85:3057–3060.ADSCrossRefGoogle Scholar
  37. Ho, C., R. Qiao, J. B. Heng, A. Chatterjee, R. J. Timp, N. R. Aluru, and G. Timp. 2005. Electrolytic transport through a synthetic nanometer-diameter pore. Proc. Natl. Acad. Sci. USA. 102(30):10445–10450.ADSCrossRefGoogle Scholar
  38. Hornblower, B., A. Coombs, R. D. Whitaker, A. Kolomeisky, S. J. Picone, A. Meller, and M. Akeson. 2007. Single-molecule analysis of DNA-protein complexes using nanopores. Nat. Methods 4(4):315–317.Google Scholar
  39. Hugel, T., and M. Seitz. 2001. The study of molecular interactions by AFM force spectroscopy. Macromol. Rapid Commun. 22(13):989–1016.CrossRefGoogle Scholar
  40. Ippen-Ihler, K. 1989. Bacterial conjugation. In Gene Transfer in the Environment, Levy SB, Miller RV, editors. McGraw-Hill, New York, pp. 33–72.Google Scholar
  41. Iqbal, S. M., D. Akin, and R. Bashir. 2007. Solid-state nanopore channels with DNA selectivity. Nat. Nanotechnol. 2(4):243–248.ADSCrossRefGoogle Scholar
  42. Jan Bonthuis, D., J. Zhang, B. Hornblower, J. Mathe, B. I. Shklovskii, and A. Meller. 2006. Self-energy-limited ion transport in subnanometer channels. Phys. Rev. Lett. 97:128104–205302.ADSCrossRefGoogle Scholar
  43. Jonas, D., I. Walev, T. Berger, M. Liebetrau, M. Palmer, and S. Bhakdi 1994. Novel path to apoptosis: Small transmembrane pores created by staphylococcal alpha-toxin in T lymphocytes evoke internucleosomal DNA degradation. Infect. Immun. 62:1304–1312.Google Scholar
  44. Kasamatsu, H., and A. Nakanishi. 1998. How do animal DNA viruses get to the nucleus? Annu. Rev. Microbiol. 52:627–686.CrossRefGoogle Scholar
  45. Kasianowicz, J., E. Brandin, D. Branton, and D. Deamer. 1996. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA. 93:13770–13773.ADSCrossRefGoogle Scholar
  46. Keyser, U. F., D. Krapf, B. N. Koeleman, R. M. M. Smeets, N. H. Dekker, and C. Dekker. 2005. Nanopore tomography of a laser focus. Nano Lett. 5(11):2253–2256.ADSCrossRefGoogle Scholar
  47. Kim, M.J., B. McNally, K. Murata, and A. Meller. 2007. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18(20).Google Scholar
  48. Kim, M.-J., M. Wanunu, C. D. Bell, and A. Meller. 2006. Rapid fabrication of uniform size nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 18:3149–3153.Google Scholar
  49. Kokjohn, T. A. 1989. Transduction: Mechanism and potential for gene transfer in the environment. In Gene Transfer in the Environment, S. B. Levy and R. V. Miller, editors. McGraw-Hill, New York, pp. 73–97.Google Scholar
  50. Lagerqvist, J., M. Zwolak, and M. Di Ventra. 2006. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6(4):779–782.ADSCrossRefGoogle Scholar
  51. Lee, J. W., and A. Meller. 2007. Rapid DNA sequencing by direct nanoscale reading of nucleotide bases on individual DNA chains. In Prospective in Bioanalysis, K. R. Mitchelson, editor. Elsevier, Burlington, MA, pp. 245–264.Google Scholar
  52. Li, J., M. Gershow, D. Stein, E. Brandin, and J. A. Golovchenko. 2003. DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2(9):611–615.ADSCrossRefGoogle Scholar
  53. Li, J., D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko. 2001. Ion-beam sculpting at nanometre length scales. Nature 412:166–169.ADSCrossRefGoogle Scholar
  54. Ling, X. S. 2008 (Private communication).ADSCrossRefGoogle Scholar
  55. Mathé, J., A. Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller. 2005. Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc. Natl. Acad. Sci. USA. 102(35):12377–12382.ADSCrossRefGoogle Scholar
  56. Mathé, J., A. Arinstein, Y. Rabin, and A. Meller. 2006. Equilibrium and irreversible unzipping of DNA in a nanopore. Europhys. Lett. 73(1):128–134.ADSCrossRefGoogle Scholar
  57. Mathé, J., H. Visram, V. Viasnoff, Y. Rabin, and A. Meller. 2004. Nanopore unzipping of individual DNA hairpin molecules. Biophys. J. 87(5):3205–3212.ADSCrossRefGoogle Scholar
  58. McNally, B., M. Wanunu and A. Meller. 2008. Electro-mechanical unzipping of individual DNA molecules using synthetic sub.2 nm pores. Nano Lett. 8:3418–3422.Google Scholar
  59. Meller, A. 2003. Dynamics of polynucleotide transport through nanometre-scale pores. J. Phys. Condens. Matter 15:R581–R607.ADSCrossRefGoogle Scholar
  60. Meller, A., and D. Branton. 2002. Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23:2583–2591.CrossRefGoogle Scholar
  61. Meller, A., L. Nivon, E. Brandin, J. Golovchenko, and D. Branton. 2000. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA. 97:1079–1084.ADSCrossRefGoogle Scholar
  62. Meller, A., L. Nivon, and D. Branton. 2001. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86:3435–3438.ADSCrossRefGoogle Scholar
  63. Miller, R.V. 1998. Bacterial gene swapping in nature. Sci. Am. 278:67–71.CrossRefGoogle Scholar
  64. Nakane, J., M. Wiggin, and A. Marziali. 2004. A nanosensor for transmembrane capture and identification of single nucleic acid molecules. Biophys. J. 87(1):615–621.ADSCrossRefGoogle Scholar
  65. Noskov, S.Y., W. Im, and B. Roux. 2004. Ion permeation through the alpha-hemolysin channel: Theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. Biophys. J. 87(4):2299–2309.ADSCrossRefGoogle Scholar
  66. Reiner, A., D. Yekutieli, and Y. Benjamini. 2003. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19(3):368–375.CrossRefGoogle Scholar
  67. Saenger, W. 1988. Principles of Nucleic Acid Structure, Springer-Verlag, New York.Google Scholar
  68. Salman, H., D. Zbaida, Y. Rabin, D. Chatenay, and M. Elbaum. 2001. Kinetics and mechanism of DNA uptake into the cell nucleous. Proc. Natl. Acad. Sci. USA 98(13):7247–7252.ADSCrossRefGoogle Scholar
  69. Sanchez-Quesada, J., A. Saghatelian, S. Cheley, H. Bayley, and M. R. Ghadiri. 2004. Single DNA rotaxanes of a transmembrane pore protein. Angew. Chem. Int. Ed. 43(23):3063–3067.CrossRefGoogle Scholar
  70. Sauer-Budge, A. F., J. A. Nyamwanda, D. K. Lubensky, and D. Branton. 2003. Unzipping kinetics of double-stranded DNA in a nanopore. Phys. Rev. Lett. 90(23):238101.ADSCrossRefGoogle Scholar
  71. Schatz, G., and B. Dobberstein. 1996. Common principles of protein translocation across membranes. Science 271:1519–1525.ADSCrossRefGoogle Scholar
  72. Smeets, R. M. M., U. F. Keyser, D. Krapf, M. Y. Wu, N. H. Dekker, and C. Dekker. 2006. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6(1):89–95.ADSCrossRefGoogle Scholar
  73. Song, L., M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouax. 1996. Structure of staphylococcal α-hemolysin a heptameric transmembrane pore. Science 274:1859–1865.ADSCrossRefGoogle Scholar
  74. Soni, G. V., and A. Meller. 2007. Progress toward ultrafast DNA sequencing using solid-state nanopores. Clin. Chem. 53(11):1996–2001.CrossRefGoogle Scholar
  75. Storm, A. J., J. H. Chen, X. S. Ling, H. W. Zandbergen, and C. Dekker. 2003. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2(8):537–540.ADSCrossRefGoogle Scholar
  76. Storm, A. J., J. H. Chen, H. W. Zandbergen, and C. Dekker. 2005a. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71(5)051903.Google Scholar
  77. Storm, A. J., C. Storm, J. H. Chen, H. Zandbergen, J. F. Joanny, and C. Dekker. 2005b. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5(7):1193–1197.ADSCrossRefGoogle Scholar
  78. Szabò, I., G. Bàthori, F. Tombola, M. Brini, A. Coppola, and M. Zoratti. 1997. DNA Translocation across planar bilayers containing Bacillus subtilis ion channels. J. Biol. Chem. 272:25275–25282.CrossRefGoogle Scholar
  79. Vercoutere, W., S. Winters-Hilt, H. Olsen, D. Deamer, D. Haussler, and M. Akeson. 2001. Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat. Biotech. 19:248–252.CrossRefGoogle Scholar
  80. Wanunu, M., B. Chakrabarti, J. Mathe, D.R. Nelson, and A. Meller. 2008a. Orientation-dependent interactions of DNA with an alpha-hemolysin channel. Phys. Rev. E 77(3)031904.Google Scholar
  81. Wanunu, M., and A. Meller. 2007. Chemically modified solid-state nanopores. Nano Lett. 7(6):1580–1585.ADSCrossRefGoogle Scholar
  82. Wanunu, M., and A. Meller. 2008. Single-molecule analysis of nucleic acids and DNA–protein interactions using nanopores. In Single-Molecule Techniques: A Laboratory Manual, P. Selvin and T. J. Ha, editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 395–420.Google Scholar
  83. Wanunu, M., J. Sutin, B. McNally, A. Chow, and A. Meller. 2008b. Unfolded DNA translocation governed by interactions with solid state nanopore. Biophys. J. 95, 4716–4725.Google Scholar
  84. Whittaker, G. R., and A. Helenius. 1998. Nuclear import and export of viruses and virus genomes. Virology 246: 1–23.CrossRefGoogle Scholar
  85. Winters-Hilt, S., W. Vercoutere, V. S. DeGuzman, D. Deamer, M. Akeson, and D. Haussler. 2003. Highly accurate classification of Watson-Crick basepairs on termini of single DNA molecules. Biophys. J. 84(2):967–976.ADSCrossRefGoogle Scholar
  86. Zwolak, M., and M. Di Ventra. 2008. Colloquium: Physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80(1):141–165.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Meni Wanunu
    • 1
  • Gautam V. Soni
    • 1
  • Amit Meller
    • 1
  1. 1.Department of Biomedical Engineering and Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations