Single-Molecule Fluorescent Particle Tracking

  • Ahmet Yildiz


One of the most fascinating processes in biology is the directed movement of organisms, subcellular compartments, and single proteins. Tracking the cellular motion is of great interest to single-molecule biophysicists to understand the mechanism of wide variety of biological processes, from basic mechanism of molecular machines to protein--protein interactions. In the last two decades, random diffusion of proteins and lipids has been tracked under the fluorescence microscope to understand how they associate with their targeted molecules. However, cellular motility is not limited to diffusion of small particles. Many fundamental processes occur by discrete physical movements upon each enzymatic cycle. For example, motor proteins of cytoskeleton can transport intracellular cargoes by taking nanometer-sized steps along the linear tracks within the cell. Several high precision techniques have been developed to understand the working principles and kinetics of motors in a detailed manner. This chapter summarizes the recent advances in fluorescence microscopy techniques that allow high precision tracking of biological molecules.


Green Fluorescent Protein Fluorescence Resonance Energy Transfer Point Spread Function Total Internal Reflection Diffraction Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Horio, T., and H. Hotani, Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature, 1986;321(6070):605–7.ADSCrossRefGoogle Scholar
  2. 2.
    Gelles, J., B. J. Schnapp, and M. P. Sheetz, Tracking kinesin-driven movements with nanometre-scale precision. Nature, 1988;331(6155):450–3.ADSCrossRefGoogle Scholar
  3. 3.
    Svoboda, K., et al., Direct observation of kinesin stepping by optical trapping interferometry. Nature, 1993;365(6448):721–7.ADSCrossRefGoogle Scholar
  4. 4.
    Funatsu, T., et al., Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature, 1995;374:555–9.ADSCrossRefGoogle Scholar
  5. 5.
    Sakamoto, T., et al., Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature, 2008;455(7209):128–32.ADSCrossRefGoogle Scholar
  6. 6.
    Hecht, E., Optics. 4th ed. San Francisco: Addison-Wesley, 2002.Google Scholar
  7. 7.
    Cheezum, M. K., W. F. Walker, and W. H. Guilford, Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J, 2001;81(4):2378–88.CrossRefGoogle Scholar
  8. 8.
    Thompson, R. E., D. R. Larson, and W. W. Webb, Precise nanometer localization analysis for individual fluorescent probes. Biophys J, 2002;82(5):2775–83.CrossRefGoogle Scholar
  9. 9.
    Schmidt, T., et al., Imaging of single molecule diffusion. Proc Natl Acad Sci USA, 1996;93(7):2926–9.ADSCrossRefGoogle Scholar
  10. 10.
    Kubitscheck, U., et al., Imaging and tracking of single GFP molecules in solution. Biophys J, 2000;78(4): 2170–9.CrossRefGoogle Scholar
  11. 11.
    Harada, Y., et al., Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol, 1990;216(1):49–68.ADSCrossRefGoogle Scholar
  12. 12.
    Lakowicz, J. R., Principles of Fluorescence. 2nd ed. New York: Kluwer Academic, 1999.Google Scholar
  13. 13.
    McKinney, S. A., et al., Structural dynamics of individual Holliday junctions. Nat Struct Biol, 2003;10(2):93–7.CrossRefGoogle Scholar
  14. 14.
    Yildiz, A., et al., Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 2003;300(5628):2061–5.ADSCrossRefGoogle Scholar
  15. 15.
    Rasnik, I., S. A. McKinney, and T. Ha, Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods, 2006;3(11):891–3.CrossRefGoogle Scholar
  16. 16.
    Adachi, K., et al., Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc Natl Acad Sci USA, 2000;97(13):7243–7.ADSCrossRefGoogle Scholar
  17. 17.
    Sambongi, Y., et al., Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science, 1999;286:1722–4.CrossRefGoogle Scholar
  18. 18.
    Vale, R. D., The molecular motor toolbox for intracellular transport. Cell, 2003;112(4):467–80.CrossRefGoogle Scholar
  19. 19.
    Asbury, C. L., Kinesin: world’s tiniest biped. Curr Opin Cell Biol, 2005;17(1):89–97.CrossRefGoogle Scholar
  20. 20.
    Spudich, J. A., The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol, 2001;2(5):387–92.CrossRefGoogle Scholar
  21. 21.
    Hua, W., J. Chung, and J. Gelles, Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science, 2002;295(5556):844–8.ADSCrossRefGoogle Scholar
  22. 22.
    Mehta, A. D., et al., Myosin-V is a processive actin-based motor. Nature, 1999;400(6744):590–3.ADSCrossRefGoogle Scholar
  23. 23.
    Okten, Z., et al., Myosin VI walks hand-over-hand along actin. Nat Struct Mol Biol, 2004;11(9):884–7.CrossRefGoogle Scholar
  24. 24.
    Yildiz, A., et al., Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J Biol Chem, 2004;279(36):37223–6.CrossRefGoogle Scholar
  25. 25.
    Kaseda, K., H. Higuchi, and K. Hirose, Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nat Cell Biol, 2003;5(12):1079–82.CrossRefGoogle Scholar
  26. 26.
    Asbury, C. L., A. N. Fehr, and S. M. Block, Kinesin moves by an asymmetric hand-over-hand mechanism. Science, 2003;302(5653):2130–4.ADSCrossRefGoogle Scholar
  27. 27.
    Yildiz, A., et al., Kinesin walks hand-over-hand. Science, 2004;303:676–8.ADSCrossRefGoogle Scholar
  28. 28.
    Reck-Peterson, S. L., et al., Single-molecule analysis of dynein processivity and stepping behavior. Cell, 2006;126(2):335–48.CrossRefGoogle Scholar
  29. 29.
    Xiao, M., et al., Rapid DNA mapping by fluorescent single molecule detection. Nucl Acids Res, 2007;35(3):e16.CrossRefGoogle Scholar
  30. 30.
    Ha, T., et al., Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci, 1996;93(13):6264–8.ADSCrossRefGoogle Scholar
  31. 31.
    Gordon, M. P., T. Ha, and P. R. Selvin, Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci USA, 2004;101(17):6462–5.ADSCrossRefGoogle Scholar
  32. 32.
    Qu, X., et al., Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci USA, 2004;101(31):11298–303.ADSCrossRefGoogle Scholar
  33. 33.
    Lacoste, T. D., et al., Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci USA, 2000;97(17):9461–6.ADSCrossRefGoogle Scholar
  34. 34.
    Churchman, L. S., et al., Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci USA, 2005;102(5):1419–23.ADSCrossRefGoogle Scholar
  35. 35.
    Warshaw, D. M., et al., Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys J, 2005. 88(5):L30–2.CrossRefGoogle Scholar
  36. 36.
    Iino, R., I. Koyama, and A. Kusumi, Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J, 2001;80(6):2667–77.CrossRefGoogle Scholar
  37. 37.
    Harms, G. S., et al., Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J, 2001;81(5):2639–46.CrossRefGoogle Scholar
  38. 38.
    Murakoshi, H., et al., Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA, 2004;101(19):7317–22.ADSCrossRefGoogle Scholar
  39. 39.
    Douglass, A. D., and R. D. Vale, Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell, 2005;121(6):937–50.CrossRefGoogle Scholar
  40. 40.
    Kohout, S. C., et al., Subunit organization and functional transitions in Ci-VSP. Nat Struct Mol Biol, 2008;15(1):106–8.CrossRefGoogle Scholar
  41. 41.
    Tombola, F., M. H. Ulbrich, and E. Y. Isacoff, The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron, 2008;58(4):546–56.CrossRefGoogle Scholar
  42. 42.
    Sako, Y., S. Minoghchi, and T. Yanagida, Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol, 2000;2(3):168–72.CrossRefGoogle Scholar
  43. 43.
    Dahan, M., et al., Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 2003;302(5644):442–5.ADSCrossRefGoogle Scholar
  44. 44.
    Lakadamyali, M., et al., Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA, 2003;100(16):9280–5.ADSCrossRefGoogle Scholar
  45. 45.
    Lakadamyali, M., M. J. Rust, and X. Zhuang, Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell, 2006;124(5):997–1009.CrossRefGoogle Scholar
  46. 46.
    Bertrand, E., et al., Localization of ASH1 mRNA particles in living yeast. Mol Cell, 1998;2(4):437–45.MathSciNetCrossRefGoogle Scholar
  47. 47.
    Golding, I., et al., Real-time kinetics of gene activity in individual bacteria. Cell, 2005;123(6):1025–36.CrossRefGoogle Scholar
  48. 48.
    Yu, J., et al., Probing gene expression in live cells, one protein molecule at a time. Science, 2006; 311(5767):1600–3.ADSCrossRefGoogle Scholar
  49. 49.
    Kural, C., et al., Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science, 2005;308(5727):1469–72.ADSCrossRefGoogle Scholar
  50. 50.
    Kural, C., et al., Tracking melanosomes inside a cell to study molecular motors and their interaction. Proc Natl Acad Sci USA, 2007;104(13):5378–82.ADSCrossRefGoogle Scholar
  51. 51.
    Gennerich, A., and D. Schild, Sizing-up finite fluorescent particles with nanometer-scale precision by convolution and correlation image analysis. Eur Biophys J, 2005;34(3):181–99.CrossRefGoogle Scholar
  52. 52.
    Nan, X., et al., Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J Phys Chem B, 2005;109(51):24220–4.CrossRefGoogle Scholar
  53. 53.
    Watanabe, T. M., and H. Higuchi, Stepwise movements in vesicle transport of HER2 by motor proteins in living cells. Biophys J, 2007;92(11):4109–20.CrossRefGoogle Scholar
  54. 54.
    Nan, X., P. A. Sims, and X. S. Xie, Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. Chemphyschem, 2008;9(5):707–12.CrossRefGoogle Scholar
  55. 55.
    Enderlein, J., E. Toprak, and P. R. Selvin, Polarization effect on position accuracy of fluorophore localization. Opt Express, 2006;14(18):8111–20.ADSCrossRefGoogle Scholar
  56. 56.
    Yasuda, R., et al., Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature, 2001;410(6831):898–904.ADSCrossRefGoogle Scholar
  57. 57.
    Xie, X. S., and R. C. Dunn, Probing single molecule dynamics. Science, 1994;265(5170):361–4.ADSCrossRefGoogle Scholar
  58. 58.
    Ha, T., et al., Single molecule dynamics studied by polarization modulation. Phys Rev Lett, 1996;77: 3979–82.ADSCrossRefGoogle Scholar
  59. 59.
    Sase, I., et al., Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc Natl Acad Sci USA, 1997;94(11):5646–50.ADSCrossRefGoogle Scholar
  60. 60.
    Sosa, H., et al., ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat Struct Biol, 2001;8(6):540–4.CrossRefGoogle Scholar
  61. 61.
    Asenjo, A. B., N. Krohn, and H. Sosa, Configuration of the two kinesin motor domains during ATP hydrolysis. Nat Struct Biol, 2003;10(10):836–42.CrossRefGoogle Scholar
  62. 62.
    Asenjo, A. B., Y. Weinberg, and H. Sosa, Nucleotide binding and hydrolysis induces a disorder–order transition in the kinesin neck-linker region. Nat Struct Mol Biol, 2006;13(7):648–54.CrossRefGoogle Scholar
  63. 63.
    Forkey, J. N., et al., Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature, 2003;422(6930):399–404.ADSCrossRefGoogle Scholar
  64. 64.
    Syed, S., et al., Adaptability of myosin V studied by simultaneous detection of position and orientation. EMBO J, 2006;25(9):1795–803.CrossRefGoogle Scholar
  65. 65.
    Bartko, A. P., K. Xu, and R. M. Dickson, Three-dimensional single molecule rotational diffusion in glassy state polymer films. Phys Rev Lett, 2002;89(2):026101/1–4.ADSCrossRefGoogle Scholar
  66. 66.
    Patra, D., I. Gregor, and J. Enderlein, Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies. J Phys Chem A, 2004;108(33):6836–41.CrossRefGoogle Scholar
  67. 67.
    Toprak, E., et al., Defocused orientation and position imaging (DOPI) of myosin V. Proc Natl Acad Sci USA, 2006;103(17):6495–9.ADSCrossRefGoogle Scholar
  68. 68.
    Shaner, N. C., et al., Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol, 2004;22(12):1567–72.CrossRefGoogle Scholar
  69. 69.
    Cinelli, R. A., et al., The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level. Photochem Photobiol, 2000;71(6):771–6.CrossRefGoogle Scholar
  70. 70.
    Howarth, M., et al., Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods, 2008;5(5):397–9.CrossRefGoogle Scholar
  71. 71.
    Smith, A. M., and S. Nie, Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J Am Chem Soc, 2008;130(34):11278–9.CrossRefGoogle Scholar
  72. 72.
    Dunn, A. R., and J. A. Spudich, Dynamics of the unbound head during myosin V processive translocation. Nat Struct Mol Biol, 2007;14(3):246–8.CrossRefGoogle Scholar
  73. 73.
    Egner, A., S. Jakobs, and S. W. Hell, Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci USA, 2002;99(6):3370–5.ADSCrossRefGoogle Scholar
  74. 74.
    Klar, T. A., et al., Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA, 2000;97(15):8206–10.ADSCrossRefGoogle Scholar
  75. 75.
    Schermelleh, L., et al., Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 2008;320(5881):1332–6.ADSCrossRefGoogle Scholar
  76. 76.
    Rust, M. J., M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 2006;3(10):793–5.CrossRefGoogle Scholar
  77. 77.
    Betzig, E., et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006;313(5793):1642–5.ADSCrossRefGoogle Scholar
  78. 78.
    Rosenberg, S. A., et al., Rotational motions of macro-molecules by single-molecule fluorescence microscopy. Acc Chem Res, 2005;38(7):583–93.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ahmet Yildiz
    • 1
  1. 1.Departments of Physics and Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations