Advertisement

RFID Security pp 103-130 | Cite as

RFID Security: Cryptography and Physics Perspectives

  • Jorge Guajardo
  • Pim Tuyls
  • Neil Bird
  • Claudine Conrado
  • Stefan Maubach
  • Geert-Jan Schrijen
  • Boris Skoric
  • Anton M. H. Tombeur
  • Peter Thueringer

Abstract

In this chapter, we provide an overview of mechanisms that are cheap to implement or integrate into RFID tags and that at the same time enhance their security and privacy properties. We emphasize solutions that make use of existing (or expected) functionality on the tag or that are inherently cheap and thus enhance the privacy friendliness of the technology “almost” for free. Technologies described include the use of environmental information (presence of light, temperature, humidity, etc.) to disable or enable the RFID tag, the use of delays to reveal parts of a secret key at different moments in time (this key is used to later establish a secure communication channel), and the idea of a “sticky tag,” which can be used to re-enable a disabled (or killed) tag whenever the user considers it to be safe. We discuss the security and describe usage scenarios for all solutions. Finally, we summarize previous works that use physical principles to provide security and privacy in RFID systems and the security-related functionality in RFID standards.

Keywords

Product Information Physic Perspective Kill Command Print Handout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auto-ID Center, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA. 860 MHz-930 MHz Class I Radio Frequency Identification Tag Radio Frequency & Logical Communication Interface Specification Candidate Recommendation, Version 1.0.1, November 14th, 2002. Technical Report. Available at http://www.epcglobalinc.org/standards technology/specifications.html
  2. 2.
    Auto-ID Center, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA. 13.56 MHz ISM Band Class 1 Radio Frequency Identification Tag Interface Specification: Candidate Recommendation, Version 1.0.0, February 3rd, 2003. Technical Report. Available at http://www.epcglobalinc.org/standards technology/specifications.html
  3. 3.
    Auto-ID Center, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA. 13.56 MHz ISM Band Class 1 Radio Frequency Identification Tag Interface Specification: Candidate Recommendation, Version 1.0.0, February 3rd, 2003. Technical Report. Available at http://www.epcglobalinc.org/standards technology/specifications.html
  4. 4.
    Auto-ID Center, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA. Draft protocol specification for a 900 MHz Class 0 Radio Frequency Identification Tag, February 23rd, 2003. Available at http://www.epcglobalinc.org/standards technology/specifications.html
  5. 5.
    L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Verbauwhede. Public key cryptography for RFID-tags. Printed handout of Workshop on RFID Security - RFIDSec 06, pp. 61-76. ECRYPT Network of Excellence, July 2006. Available at http://events.iaik. tugraz.at/RFIDSec06/Program/index.htm
  6. 6.
    E. Batista.‘Step Back’ for Wireless ID Tech? Wired News, April 8th, 2003 Available at http://www.wired.com/news/wireless/0, 1382, 58385, 00.html
  7. 7.
    N. Bird, C. Conrado, J. Guajardo, S. Maubach, G.-J. Schrijen, B. Skoric, A.M.H. Tombeur, P. Thueringer, and P. Tuyls. ALGSICS - Combining Physics and Cryptography to Enhance Security and Privacy in RFID Systems. In F. Stajano, C. Meadows, and S. Capkun, editors, Security and Privacy in Adhoc and Sensor Networks - ESAS 2007, number 4572 in LNCS, pp. 187-202, Springer, Berlin, 2007CrossRefGoogle Scholar
  8. 8.
    L. Bolotnyy and G. Robins. Multi-tag radio frequency identification systems. In Workshop on Automatic Identification Advanced Technologies - AutoID 2005, pp. 83-88, 345 E. IEEE, 47th St, New York, NY 10017, USA, October, 2005Google Scholar
  9. 9.
    S. Bono, M. Green, A. Stubblefield, A. Juels, A. Rubin, and M. Szydlo. Security analysis of a cryptographically-enabled RFID device. In P. McDaniel, editor, USENIX Security Symposium - Security'05, pp. 1-16, 2005Google Scholar
  10. 10.
    S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). In T. Helleseth, editor, Advances in Cryptology - EUROCRYPT'93, volume 765 of LNCS, pp. 344-359, Springer, Berlin, 1994Google Scholar
  11. 11.
    D. Carluccio, T. Kasper, and C. Paar. Implementation details of a multi purpose ISO 14443 RFID-tool. Printed handout of Workshop on RFID Security - RFIDSec 06, pp. 181-197. ECRYPT Network of Excellence, July 2006. Available at http://events.iaik.tugraz. at/RFIDSec06/Program/index.htm
  12. 12.
    D. Carluccio, K. Lemke, and C. Paar. E-passport: the global traceability or how to feel like an UPS package. Printed handout of Workshop on RFID Security - RFIDSec 06, pp. 167-180. ECRYPT Network of Excellence, July 2006. Available at http://events.iaik.tugraz. at/RFIDSec06/Program/index.htm
  13. 13.
    C. Castelluccia andG. Avoine. Noisy tags: A pretty good key exchange protocol for RFID tags. In J. Domingo-Ferrer, J. Posegga, and D. Schreckling, editors, International Conference on Smart Card Research and Advanced Applications - CARDIS 2006, volume 3928 of LNCS, pp. 289-299, Tarragona, Spain, April 2006. IFIP, Springer, BerlinCrossRefGoogle Scholar
  14. 14.
    H. Chabanne and G. Fumaroli. Noisy cryptographic protocols for low-cost RFID tags. IEEE Transactions on Information Theory, 52(8): 3562-3566, August 2006CrossRefMathSciNetGoogle Scholar
  15. 15.
    Y. Chan, M.Q.-H. Meng, K.-L. Wu, and X. Wang. Experimental study of radiation efficiency from an ingested source inside a human body model. In IEEE Annual International Conference of the Engineering in Medicine and Bilogy Society - IEEE-EMBS 2005, pp. 7754-7757, September 1-4, 2005Google Scholar
  16. 16.
    CS81 Series Standard Cell. 0.18 µm CMOS Technology. Available at http://www.fujitsu. com/downloads/MICRO/fma/pdf/cs81.pdf, 1999
  17. 17.
    S. Dominikus, E. Oswald, and M. Feldhofer. Symmetric authentication for RFID systems in practice. Printed handout of Workshop on RFID and Light-Weight Crypto, pp. 25-31. ECRYPT Network of Excellence, July 13-15, 2005Google Scholar
  18. 18.
    J. Eagle. RFID: The Early Years 1980-1990. Available at http://members.surfbest.net/ eaglesnest/rfidhist.htm. Website. Updated September 27, 2002
  19. 19.
    D.W. Engels and S. Sarma. Standardization Requirements within the RFID Class Structure Framework. Technical report, Auto-ID Laboratories, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA, January 2005. Available at http://ken.mit.edu/web/
  20. 20.
    EPCGlobal Inc., Princeton Pike Corporate Center, Suite 202 Lawrenceville, NJ 08648, USA. EPCTM Generation 1 Tag Data Standards Version 1.1 Rev. 1.27 - Standard Specification, May 10, 2005. Available at http://www.epcglobalinc.org/standards technology/ specifications.html
  21. 21.
    EPCGlobal Inc., Princeton Pike Corporate Center, Suite 202 Lawrenceville, NJ 08648, USA. EPCTM Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Conformance Requirements - Version 1.0.2, February 1, 2005. Available at http://www.epcglobalinc. org/standards technology/specifications.html
  22. 22.
    EPCGlobal Inc., Princeton Pike Corporate Center, Suite 202 Lawrenceville, NJ 08648, USA. EPCTM Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz - Version 1.0.9, January 31, 2005. Available at http://www.epcglobalinc.org/standards technology/specifications.html
  23. 23.
    EPCGlobal Inc., Princeton Pike Corporate Center, Suite 202 Lawrenceville, NJ 08648, USA. EPCTM Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz - Version 1.0.9, January 31, 2005. Available at http://www.epcglobalinc.org/standards technology/specifications.html
  24. 24.
    EPCGlobal Inc., Princeton Pike Corporate Center, Suite 202 Lawrenceville, NJ 08648, USA. EPCglobal tag Data Standards Version 1.3. Ratified Specification, March 8, 2006. Available at http://www.epcglobalinc.org/standards/EPCglobal Tag Data Standard TDS Version 1.3.pdf
  25. 25.
    M. Feldhofer and C. Rechberger. A case against currently used hash functions in RFID protocols. Printed handout of Workshop on RFID Security - RFIDSec 06, pp. 109-122. ECRYPT Network of Excellence, July 2006Google Scholar
  26. 26.
    M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong authentication for RFID systems using the AES algorithm. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems - CHES 2004, volume 3156 of LNCS, pp. 357-370, Springer, Berlin, 2004Google Scholar
  27. 27.
    K.P. Fishkin, S. Roy, and B. Jiang. Some methods for privacy in RFID communication. In C. Castelluccia, H. Hartenstein, C. Paar, and D. Westhoff, editors, Security in Adhoc and Sensor Networks - ESAS 2004, volume 3313 of LNCS, pp. 42-53. Springer, Berlin, 2005CrossRefGoogle Scholar
  28. 28.
    C. Floerkemeier, R. Schneider, and M. Langheinrich. Scanning with a purpose - supporting the fair information principles in RFID protocols. In H. Murakami, H. Nakashima, H. Tokuda, and M. Yasumura, editors, International Symposium on Ubiquitous Computing Systems - UCS 2004, volume 3598 of LNCS, pp. 214-231, Tokyo, Japan, Springer, Berlin, November 2004Google Scholar
  29. 29.
    G. Hancke and M. Kuhn. An RFID distance bounding protocol. In Conference on Security and Privacy for Emerging Areas in Communication Networks - SecureComm 2005, pp. 67-73. IEEE Computer Society, September 2005Google Scholar
  30. 30.
    E. Haselsteiner and K. Breitfuss. Security in near field communication (NFC). Printed handout of Workshop on RFID Security - RFIDSec 06, pp. 151-166. ECRYPT Network of Excellence, July 2006Google Scholar
  31. 31.
    ICC Policy Statement: The fight against piracy and counterfeiting of intellectual property. Submitted to the 35th World Congress, Marrakech, Document no 450/986, ICC, June 1, 2004Google Scholar
  32. 32.
    S. Inoue and H. Yasuura. RFID privacy using user-controllable uniqueness. RFID Privacy Workshop, November 2003Google Scholar
  33. 33.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC 11785:1996 -Radio frequency identification of animals - Technical concept, October 15, 1996Google Scholar
  34. 34.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC 144432 -Identification cards-Contactless integrated circuit(s) cards-Proximity cards-Part 2: Radio frequency interface power and signal interface, September 14, 2000. Final DraftGoogle Scholar
  35. 35.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC 144433 -Identification cards - Contactless integrated circuit(s) cards-Proximity cards - Part 3: Initialization and anticollision, January 13, 2000 Final DraftGoogle Scholar
  36. 36.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC156932:2000 - Identification cards - Contactless integrated circuit(s) cards - Vicinity cards - Part 2: Air interface and initialization, May 1, 2000Google Scholar
  37. 37.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC105363:1996 - Identification cards - Contactless integrated circuit(s) cards - Part 3: Electronic signals and reset procedures, August 13, 2001Google Scholar
  38. 38.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC156933:2001 - Identification cards - Contactless integrated circuit(s) cards - Vicinity cards - Part 3: Anticollision and transmission protocol, April 1, 2001Google Scholar
  39. 39.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC 180002:2003(E)-2 - Information technology - Radio frequency identification for item management -Part 2: Parameters for air interface communications below 135 kHz, November 26, 2003Google Scholar
  40. 40.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC 180003:2003(E) - Information technology - Radio frequency identification for item management -Part 3: Parameters for air interface communications at 13,56 MHz, February 13, 2003Google Scholar
  41. 41.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC 180004:2003(E) - Information technology - Radio frequency identification for item management - Part 4: Parameters for air interface communications at 2.45 GHz., March 25, 2003. Work-ing documentGoogle Scholar
  42. 42.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC180006:2003(E) - Information technology - Radio frequency identification for item management - Part 6: Parameters for air interface communications at 860 MHz to 960 MHz, November 26, 2003Google Scholar
  43. 43.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC 180007 - In-formation technology - Radio frequency identification for item management - Part 7: Para-meters for active air interface communications at 433 MHz, September 30, 2003. Working documentGoogle Scholar
  44. 44.
    International Organization for Standardization, Geneva, Switzerland. ISO/IEC 11784:1996 -Radio frequency identification of animals - Code structure, August 15, 2004Google Scholar
  45. 45.
    A. Juels. Minimalist cryptography for low-cost RFID tags. In C. Blundo and S. Cimato, editors, Security in Communication Networks - SCN 2004. Revised Selected Papers, volume 3352 of LNCS, pp. 149-164. Springer, Berlin, September 8-10, 2004Google Scholar
  46. 46.
    A. Juels. RFID Security and privacy: A research survey. IEEE Journal on Selected Areas in Communications, 24(2): 381-394, February 2006. Extended version available from http://www.rsasecurity.com/rsalabs/node.asp?id=2029
  47. 47.
    A. Juels and J.G. Brainard. Soft blocking: flexible blocker tags on the cheap. In V. Atluri, P.F. Syverson, and S. De Capitani di Vimercati, editors, ACM Workshop on Privacy in the Electronic Society - WPES 2004, pp. 1-7, ACM Press, New York, NY, October 28, 2004CrossRefGoogle Scholar
  48. 48.
    A. Juels and R. Pappu. Squealing Euros: Privacy Protection in RFID-Enabled Banknotes. In R.N. Wright, editor, Financial Cryptography - FC'03 , volume 2742 ofLNCS, pp. 103-121, IFCA, Springer, Berlin, January 2003Google Scholar
  49. 49.
    A. Juels and S.A. Weis. Authenticating pervasive devices with human protocols. In V. Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume 3126 of LNCS, pp. 293-308, Springer, Berlin, August 2005Google Scholar
  50. 50.
    A. Juels, R.L. Rivest, and M. Szydlo. The blocker tag: selective blocking of RFID tags for consumer privacy. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM Conference on Computer and Communications Security - CCS 2003, pp. 103-111, ACM Press, New York, NY October 27-30, 2003CrossRefGoogle Scholar
  51. 51.
    A. Juels, R. Pappu, and S. Garfinkel. RFID privacy: An overview of problems and proposed solutions. IEEE Security and Privacy, 3(3): 34-43, May/June 2005. Extended version available from http://www.rsasecurity.com/rsalabs/node.asp?id=2029
  52. 52.
    A. Juels, P. Syverson, and D. Bailey. High-power proxies for enhancing RFID privacy and utility. In G. Danezis and D. Martin, editors, Privacy Enhancing Technologies - PET 2005, volume 3856 of LNCS, pp. 210-226, Springer, Berlin, 2005CrossRefGoogle Scholar
  53. 53.
    G. Karjoth and P. Moskowitz. Disabling RFID tags with visible confirmation: Clipped tags are silenced. In Workshop on Privacy in the Electronic Society - WPES, Alexandria, Virginia, USA, ACM, ACM Press, New York, NY, November 2005Google Scholar
  54. 54.
    T. Karygiannis, B. Eydt, G. Barber, L. Bunn, and T. Phillips. Draft Special Publication 800-98, Guidance for Securing Radio Frequency Identification (RFID) Systems. National Institute for Standards and Technology, Gaithersburg, MD, USA, September 2006. Available for download at http://csrc.nist.gov/
  55. 55.
    H. Kitayoshi and K. Sawaya. Long range passive RFID-tag for sensor networks. In IEEE 62nd Vehicular Technology Conference - VTC-2005, pp. 2696-2700, IEEE Computer Society, Los Alamitos, CA, USA, 25-28 Sept, 2005Google Scholar
  56. 56.
    KU Information & Telecommunication Technology Center. The University of Kansas. UHF KURFID Tag, 2006. Available at http://www.rfidalliancelab.org/publications/ittc press release.shtml
  57. 57.
    S.S. Kumar and C. Paar. Are standards compliant elliptic curve cryptosystems feasible on RFID? Printed handout of Workshop on RFID Security - RFIDSec 06, pp. 41-60. ECRYPT Network of Excellence, July 2006. Available at http://events.iaik.tugraz. at/RFIDSec06/Program/index.htm
  58. 58.
    J. Landt. Shrouds of Time - The History of RFID. Whitepaper, AIM Inc., October 1, 2001. Available at http://www.transcore.com/pdf/AIM%20shrouds of time.pdf
  59. 59.
    T.C. May. Timed-release crypto. Posting to the Cypherpunks Mailing List, February 10, 1993. Available at http://cypherpunks.venona.com/date/1993/02/msg00129.html
  60. 60.
    J. Munilla, A. Ortiz, and A. Peinado. Distance bounding protocols with voidchallenges for RFID. Printed handout of Workshop on RFID Security - RFIDSec 06, pp. 15-26. ECRYPT Network of Excellence, July 2006Google Scholar
  61. 61.
    National Institute for Standards and Technology, Gaithersburg, MD, USA. FIPS 197: Advanced Encryption Standard (AES), November 2001. Available for download at http://csrc.nist.gov/encryption
  62. 62.
    M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryptographic approach to “privacy-friendly” tags. In RFID Privacy Workshop, MIT, Cambridge, MA, USA, November 2003. Available at http://lasecwww.epfl.ch/∼gavoine/rfid/
  63. 63.
    K. Opasjumruskit, T. Thanthipwan, O. Sathusen, P. Sirinamarattana, P. Gadmanee, E. Pootarapan, N. Wongkomet, A. Thanachayanont, and M. Thamsirianunt. Self-powered wireless temperature sensors exploit RFID technology. IEEE Pervasive Computing, 5(1): 54-61, Jan.-March 2006CrossRefGoogle Scholar
  64. 64.
    P. Peris-Lopez, J.C. Hernandez-Castro, J. Estevez-Tapiador, and A. Ribagorda. LMAP: A real lightweight mutual authentication protocol for low-cost RFID tags. Printed handout of Workshop on RFID Security - RFIDSec 06, pp. 137-148. ECRYPT Network of Excellence, July 2006. Available at http://events.iaik.tugraz.at/RFIDSec06/Program/index.htm
  65. 65.
    M. Philipose, J.R. Smith, B. Jiang, A. Mamishev, R. Sumit, and K. Sundara-Rajan. Battery-free wireless identification and sensing. IEEE Pervasive Computing, 4(1): 37-45, Jan-March 2005CrossRefGoogle Scholar
  66. 66.
    T. Phillips, T. Karygiannis, and R. Kuhn. Security standard for the rfid market. IEEE Security and Privacy, 3(6): 85-89, November-December 2005CrossRefGoogle Scholar
  67. 67.
    S. Radovanovic, A.J. Annema, and B. Nauta. High-speed lateral polysilicon photodiode in standard CMOS technology. In 33rd European Solid-State Circuits Conference - ESS-DERC'03, pp. 521-524. IEEE Computer Society, 16-18 Sept. 2003Google Scholar
  68. 68.
    D.C. Ranasinghe, D.W. Engels, and P.H. Cole. Low-cost RFID systems: Confronting security and privacy. In Auto-ID Labs Research Workshop, Zurich, Switzerland, September 2004Google Scholar
  69. 69.
    RFID Journal. RFID Tag Market in Flux. Available at http://www.rfidjournal.com/article/articleview/971/1/1/ , June 2004
  70. 70.
    RFID Journal. A Summary of RFID Standards. Available at http://www.rfidjournal.com/article/articleview/1335/1/129/, 2005
  71. 71.
    M. Rieback, B. Crispo, and A. Tanenbaum. RFID guardian: A battery-powered mobile device for RFID privacy management. In C. Boyd and J.M. Gonz ález Nieto, editors, Australasian Conference on Information Security and Privacy - ACISP'05, volume 3574 of LNCS, pp. 184-194, Brisbane, Australia, Springer, Berlin, July 2005Google Scholar
  72. 72.
    R.L. Rivest. Chaffing and winnowing: Confidentiality without encryption. CryptoBytes, 4(1): 12-17, Summer 1998Google Scholar
  73. 73.
    K. Sakiyama, L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede. Small-footprint ALU for public-key processors for pervasive security. Printed handout of Workshop on RFID Security - RFIDSec 06, pp. 77-88. ECRYPT Network of Excellence, July 2006. Available at http://events.iaik.tugraz.at/RFIDSec06/Program/index.htm
  74. 74.
    S. Sarma. Towards the 5c Tag. White paper mit-autoid-wh-006, Auto-ID Center, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA, November 1, 2001. Distribution restricted to sponsors until February 1, 2002Google Scholar
  75. 75.
    S. Sarma. Some issues related to RFID and security. Introductory Talk - RFIDSec 06, July 2006. Available at http://events.iaik.tugraz.at/RFIDSec06/Program/index.htm
  76. 76.
    S. Sarma and D.W. Engels. On the Future of RFID Tags and Protocols. Technical report mit-autoid-tr-018, Auto-ID Center, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA, June 1st, 2003. Early Released July 2003. Available at http://www. epcglobalinc.org/standards technology/specifications.html
  77. 77.
    S. Sarma, S. Weis, and D. Engels. Radio-frequency identification: Security risks and challenges. Cryptobytes, 6(1): 2-9, Winter/Spring 2003. Available at http://www.rsasecurity. com/rsalabs/
  78. 78.
    A. Soppera and T. Burbridge. Off by default - RAT: RFID acceptor tag. Printed handout of Workshop on RFID Security - RFIDSec 06, pp. 151-166. ECRYPT Network of Excellence, July 2006Google Scholar
  79. 79.
    T. Staake, F. Thiesse, and E. Fleisch. Extending the EPC network - The potential of RFID in anti-counterfeiting. In A. Omicini H. Haddad, L.M. Liebrock and R.L. Wainwright, editors, ACM Symposium on Applied Computing - SAC 2005, pp. 1607-1612. ACM Press, New York, NY, March 13-17, 2005CrossRefGoogle Scholar
  80. 80.
    F. Stajano and R.J. Anderson. The resurrecting duckling: Security issues for adhoc wireless networks. In B. Christianson, B. Crispo, J.A. Malcolm, and M. Roe, editors, Security Protocols Workshop, volume 1796 of LNCS. Springer, Berlin, April 19-21, 2000Google Scholar
  81. 81.
    C. Swedberg. DHL Expects to Launch “Sensor Tag” Service by Midyear. RFID Journal. Available at http://www.rfidjournal.com/article/articleprint/2986/-1/1/, January 19th, 2007
  82. 82.
    K. Takaragi, M. Usami, R. Imura, R. Itsuki, and T. Satoh. An ultra small individual recognition security chip. IEEE Micro, 21(6): 43-49, November-December 2001CrossRefGoogle Scholar
  83. 83.
  84. 84.
    TSMC Standard Cell Libraries. Available at http://www.cadence.com/datasheets/4456 TSMC SC ds.pdf
  85. 85.
    P. Tuyls and L. Batina. RFID-tags for anti-counterfeiting. In D. Pointcheval, editor, Topics in Cryptology-CT-RSA 2006, volume 3860 of LNCS, pp. 115-131. Springer, Berlin, February 13-17 2006CrossRefGoogle Scholar
  86. 86.
    S. Weis. Security and privacy in radio-frequency identification devices. Master Thesis, Massachusetts Institute of Technology (MIT), Massachusetts, USA, May 2003Google Scholar
  87. 87.
    S.A. Weis, S.E. Sarma, R.L. Rivest, and D.W. Engels. Security and privacy aspects of low-cost radio frequency identification systems. In D. Hutter, G. M üller, W. Stephan, and M. Ullmann, editors, First International Conference on Security in Pervasive Computing - SPC 2003, volume 2802 of LNCS, pp. 201-212. Springer, Berlin, March 2003Google Scholar
  88. 88.
    C.C. Zou. PCB: Physically Changeable Bit for Preserving Privacy in Low-End RFID Tags. RFID White Paper Library, RFID Journal, May 2006Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jorge Guajardo
    • 1
  • Pim Tuyls
  • Neil Bird
  • Claudine Conrado
  • Stefan Maubach
  • Geert-Jan Schrijen
  • Boris Skoric
  • Anton M. H. Tombeur
  • Peter Thueringer
  1. 1.Philips Research EuropeEindhovenThe Netherlands

Personalised recommendations