Advertisement

RFID Security pp 417-433 | Cite as

Hardware Implementation of a TEA-Based Lightweight Encryption for RFID Security

  • P. Israsena
  • S. Wongnamkum

Abstract

This chapter discusses hardware implementation strategies for employing the relatively lightweight Tiny Encryption Algorithm (TEA) in low-cost secure RFID systems. Low-cost RFID tags have stringent requirements, particularly in terms of cost related to silicon area, making conventional encryption unsuitable. Three different architectures implementing the TEA are evaluated and benchmarked with reference to designs that are area-optimized AES cores. It is found that using a customized digit-serial architecture, the TEA core has met the low-cost area requirement while consuming significantly less power than the AES equivalences. The core has an equivalent gate number of 3,872. Based on 0.35-μm CMOS technology, the complete layout has an area of 0.211 mm2, suggesting a highly compact core solution.

Keywords

Authentication Scheme Block Cipher Advance Encryption Standard Data Encryption Standard Electronic Product Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finkenzeller K. (2003) RFID-Handbook, Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd edn. Wiley, New York, NYGoogle Scholar
  2. 2.
    Rankl W. (2000) Smart Card Handbook, 2nd edn. Wiley, New York, NYGoogle Scholar
  3. 3.
    EPC Global (2005) EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz. http://www.epcglobalinc.org. Accessed 21 February 2008
  4. 4.
    EPC Global (2004). http://www.epcglobalinc.org
  5. 5.
    Sarma S.E. (2001) Towards the 5 ¢Tag. Technical Report MIT-AUTOID-WH-006. MIT, Auto-ID CenterGoogle Scholar
  6. 6.
    Weis S.A. (2004) RFID Privacy Workshop. IEEE Security and Privacy Magazine, 2(2): 48–50CrossRefMathSciNetGoogle Scholar
  7. 7.
    Juels A., Rivest R.L., Szydlo M. (2003) The blocker hag: Selective blocking of RFID tags for consumer privacy. In: Tenth ACM Conference on Computer and Communication Security, pp. 103–111Google Scholar
  8. 8.
    Duc D.N., Park J., Lee H., Kim K. (2006) Enhancing security of EPCglobal GEN-2 RFID tag against traceability and cloning. In: Symposium on Cryptography and Information Security, JapanGoogle Scholar
  9. 9.
    Juels A. (2005) Strengthening EPC tag against cloning. In: Jakobsson M., Poovendran R. (eds.) ACM Workshop on Wireless Security (WiSe), pp. 67–76Google Scholar
  10. 10.
    Karthikeyan S., Nesterenko M. (2005) RFID Security without extensive cryptography. In: Third ACM Workshop on Security of Ad Hoc and Sensor Network, pp. 63–67Google Scholar
  11. 11.
    Weis S.A., Sarma S.E., Rivest R.L., Engels D.W. (2003) Security and privacy aspects of low-cost radio frequency identification systems. In: First International Conference on Security in Pervasive Computing. Lecture Notes in Computer Science 2802, pp. 201–212Google Scholar
  12. 12.
    Juels A. (2006) RFID security and privacy: A research survey. IEEE Journals on Selected Areas in Communications 24(2): 381–394CrossRefMathSciNetGoogle Scholar
  13. 13.
    Wheeler D.J., Needham R.M. (1994) TEA, a tiny encryption algorithm. In: Second International Workshop on Fast Software Encryption. Lecture Notes in Computer Science 1008, pp. 363–366Google Scholar
  14. 14.
    Feldhofer M., Dominikus S., Wolkerstorfer J. (2004) Strong authentication for RFID systems using the AES algorithm. In: Cryptographic Hardware and Embedded Systems. Lecture Notes in Computer Science 3156, pp. 357–370Google Scholar
  15. 15.
    Pongjit J. (2003) Power-Area efficient advanced encryption standard IP core targeting smart card applications. Master Thesis, Asian Institute of TechnologyGoogle Scholar
  16. 16.
    International Organization for Standardization (2003) ISO/IEC 18000–4 Information Technology AIDC Techniques - RFID for Item ManagementGoogle Scholar
  17. 17.
    Schneier B. (1996) Applied Cryptography, 2nd edn. Wiley, New York, NYGoogle Scholar
  18. 18.
    Menezes A.J., van Oorschot P.C., Vanstone S.A. (1997) Handbook of Applied Cryptography. CRC, Boca Raton, FLMATHGoogle Scholar
  19. 19.
    Verbauwhede I., Schaumont P., Kuo H. (2003) Design and performance testing of a 2.29 Gb/s Rijndael processor. IEEE Journal of Solid-State Circuits, March: 569–572Google Scholar
  20. 20.
    National Institute of Standards and Technology (NIST) (2001) FIPS-197: Advanced Encryption StandardGoogle Scholar
  21. 21.
    Lai X., Massey J.L. (1990) A proposal for a new block encryption standard. In: Advances in Cryptography-EUROCRYPT 1990. Lecture Notes in Computer Science 473, pp. 389–404CrossRefMathSciNetGoogle Scholar
  22. 22.
    Kelsey J., Schneier B., Wagner D. (1996) Key-schedule cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Advances in Cryptology-CRYPTO ‘96. Lecture Notes in Computer Science 1109, pp. 237–251CrossRefMathSciNetGoogle Scholar
  23. 23.
    Kelsey J., Schneier B., Wagner D., (1997) Related-key cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X NewDES, RC2, and TEA. In: First International Conference on Information and Communication Security. Lecture Notes in Computer Science 1334, pp. 233–246CrossRefGoogle Scholar
  24. 24.
    Austria Micro Systems (2003) 0.35 µm CMOS Digital Standard Cell DatabookGoogle Scholar
  25. 25.
    Ehrsam W.F. et al. (1976) Product block cipher system for data security, U.S. Patent 3,962,539Google Scholar
  26. 26.
    Kau H., Verbauwhede I. (2001) Architectural optimization for a 1.82 Gbits/sec VLSI implementation of the AES Rijndael algorithm. In: CHES 2001. Lecture Notes in Computer Science 2166, pp. 51–64Google Scholar
  27. 27.
    Satoh M.S., Takano K., Munetoh S. (2001) A compact Rijndael hardware architecture with s-box optimization. In: ASIACRYPT 200. Lecture Notes in Computer Science 2248, pp. 239–254CrossRefMathSciNetGoogle Scholar
  28. 28.
    Lin T.F. et al. (2002) A high throughput low-cost AES cipher chip. In: Third IEEE Asia-Pacific Conference on ASIC, pp. 85–88Google Scholar
  29. 29.
    Mangard S., Aigner M., Dominikus S. (2003) A highly regular and scalable AES hardware architecture. IEEE Transactions on Computers, 52(4): 483–491CrossRefGoogle Scholar
  30. 30.
    Feldhofer M., Wolkerstorfer J., Rijmen V. (2005) AES implementation on a grain of sand. IEE Proceedings on Information Security 152(1): 13–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. Israsena
    • 1
  • S. Wongnamkum
  1. 1.National Electronics and Computer Technology Center (NECTEC)PathumthaniThailand

Personalised recommendations