Piezoelectric Equivalent Circuit Models

  • Björn Richter
  • Jens Twiefel
  • Jörg Wallaschek


Electromechanical equivalent circuits can be used to model the dynamics of piezoelectric systems. In the following, they will be applied for the modeling of piezoelectric bending generators for energy harvesting. Therefore, the basic analogies between electrical and mechanical systems will be discussed and a simple piezoelectric equivalent circuit model for a system which can be described by a single mechanical modal coordinate will be derived. In a next step, an experimentally based method for the determination of the model parameters will be presented. The modeling of additional mechanical degrees of freedom as well as the modeling of force and kinematic base excitation will also be addressed.


Load Resistance Piezoelectric Layer Equivalent Circuit Model Piezoelectric Element Base Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballas, R.G. (2007) Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration. Springer, Berlin HeidelbergGoogle Scholar
  2. Ballato and Smits (1994) Dynamic Admittance Matrix of Piezoelectric Cantilever Bimorphs. In: Journal of Microelectromechanical Systems, Vol. 3, No. 3, pp. 105–112Google Scholar
  3. Cady, W.G. (1922) The piezo-electric resonator. In: Proceedings of the Institute of Radio Engineers, Vol. 10, pp. 83–114Google Scholar
  4. IEEE Std 176–1978 (1978) IEEE Standard on Piezoelectricity. The Institute of Electric and Electronic EngineersGoogle Scholar
  5. Król, R. Mracek, M. and Redenius, A. (2005) Eine Methodik zur Ableitung einfacher Ersatzmodelle zur automatischen Konfigurierung piezoelektrischer Antriebe mittels der Finite Elementen Methode. In: VDI-Berichte 1892: Mechatronik 2005 Innovative Produktentwicklung, Band 1, S. 137–152. VDI Verlag, DüsseldorfGoogle Scholar
  6. Lenk, A. (1977) Elektromechanische Systeme. Band 2: Systeme mit verteilten Parametern. VEB Verlag Technik, BerlinGoogle Scholar
  7. Mason, W.P. (1935) An electromechanical representation of a piezoelectric crystal used as a transducer. In: Proceedings of the Institute of Radio Engineers, Vol. 23, 10, pp. 1252–1263Google Scholar
  8. Piefort, V. (2001) Finite Element Modelling of Piezoelectric Active Structures. PhD-Thesis, Université Libre de Bruxelles.Google Scholar
  9. Richter, B. and Twiefel, J. (2007) On the need of modeling the interdependence between piezoelectric generators and their environmental excitation source. In: Fu-Kuo Chang (ed.) Structural Health Monitoring 2007: Quantification, validation and Implementation. DEStech Publications Inc., Palo Alto, pp. 1749–1756Google Scholar
  10. Richter, B. Twiefel, J. Hemsel, T. and Wallaschek, J. (2006) Model based Design of Piezoelectric Generators utilizing Geometrical and Material Properties. In: 2006 ASME Intl. Eng. Congress and ExpositionGoogle Scholar
  11. Tokin Corp. (1987) Piezo-Electric Bimorph Element. Patent JP63268279A invented by Tamura MitsuoGoogle Scholar
  12. Van Dyke, K.S. (1925) The electric network equivalents of a piezoelectric resonator. In: Physical Review. American Institute of Physics. Vol. 25, 895AGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Björn Richter
  • Jens Twiefel
  • Jörg Wallaschek
    • 1
  1. 1.Gottfried Wilhelm Leibniz Universität HannoverGermany

Personalised recommendations