Advertisement

Performance Evaluation of Vibration-Based Piezoelectric Energy Scavengers

  • Yi-Chung Shu

Abstract

This chapter summarizes several recent activities for fundamental understanding of piezoelectric vibration-based energy harvesting. The developed framework is able to predict the electrical behavior of piezoelectric power harvesting systems using either the standard or the synchronized switch harvesting on inductor (SSHI) electronic interface. In addition, some opportunities for new devices and improvements in existing ones are also pointed here.

Keywords

Energy Harvest Electromechanical Coupling Ionic Polymer Metal Composite Smart Material Piezoelectric Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajitsaria1, J., Choe, S. Y., Shen, D. and Kim, D. J. (2007). Modeling and Analysis of a Bimorph Piezoelectric Cantilever Beam for Voltage Generation, Smart Materials and Structures 16: 447–454.CrossRefGoogle Scholar
  2. Allen, J. J. and Smits, A. J. (2001). Energy Harvesting EEL, Journal of Fluids and Structures 15: 629–640.CrossRefGoogle Scholar
  3. Anton, S. R. and Sodano, H. A. (2007). A Review of Power Harvesting using Piezoelectric Materials (2003-2006), Smart Materials and Structures 16: R1–R21.CrossRefGoogle Scholar
  4. Badel, A., Benayad, A., Lefeuvre, E., Lebrun, L., Richard, C. and Guyomar, D. (2006a). Single Crystals and Nonlinear Process for Outstanding Vibration-Powered Electrical Generators, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 53: 673–684.Google Scholar
  5. Badel, A., Guyomar, D., Lefeuvre, E. and Richard, C. (2005). Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion, Journal of Intelligent Material Systems and Structures 16: 889–901.CrossRefGoogle Scholar
  6. Badel, A., Guyomar, D., Lefeuvre, E. and Richard, C. (2006b). Piezoelectric Energy Harvesting Using a Synchronized Switch Technique, Journal of Intelligent Material Systems and Structures 17: 831–839.CrossRefGoogle Scholar
  7. Beeby, S. P., Torah, R. N., Tudor, M. J., Glynne-Jones, P., O’Donnell, T., Saha, C. R. and Roy, S. (2007). A Micro Electromagnetic Generator for Vibration Energy Harvesting, Journal of Micromechanics and Microengineering 17: 1257–1265.CrossRefGoogle Scholar
  8. Brufau-Penella, J., Puig-Vidal, M., Giannone, P., Graziani, S. and Strazzeri, S. (2008). Characterization of the Harvesting Capabilities of an Ionic Polymer Metal Composite Device, Smart Materials and Structures 17: 015009.CrossRefGoogle Scholar
  9. Challa, V. R., Prasad, M. G., Shi, Y. and Fisher, F. T. (2008). A Vibration Energy Harvesting Device with Bidirectional Resonance Frequency Tunability, Smart Materials and Structures 17: 015035.CrossRefGoogle Scholar
  10. Chandrakasan, A., Amirtharajah, R., Goodman, J. and Rabiner, W. (1998). Trends in Low Power Digital Signal Processing, International Symposium on Circuits and Systems 4: 604–607.Google Scholar
  11. Charnegie, D., Mo, C., Frederick, A. A. and Clark, W. W. (2006). Tunable Piezoelectric Cantilever for Energy Harvesting, Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, pp. IMECE2006–14431.Google Scholar
  12. Cheng, S., Wang, N. and Arnold, D. P. (2007). Modeling of Magnetic Vibrational Energy Harvesters using Equivalent Circuit Representations, Journal of Micromechanics and Microengineering 17: 2328–2335.CrossRefGoogle Scholar
  13. Cho, J., Anderson, M., Richards, R., Bahr, D. and Richards, C. (2005a). Optimization of Electromechanical Coupling for a Thin-Film PZT Membrane: I. Modeling, Journal of Micromechanics and Microengineering 15: 1797–1803.CrossRefGoogle Scholar
  14. Cho, J., Anderson, M., Richards, R., Bahr, D. and Richards, C. (2005b). Optimization of Electromechanical Coupling for a Thin-Film PZT Membrane: II. Experiment, Journal of Micromechanics and Microengineering 15: 1804–1809.CrossRefGoogle Scholar
  15. Cho, J. H., Richards, R. F., Bahr, D. F., Richards, C. D. and Anderson, M. J. (2006). Efficiency of Energy Conversion by Piezoelectrics, Applied Physics Letter 89: 104107.CrossRefGoogle Scholar
  16. Choi, W. J., Jeon, Y., Jeong, J. H., Sood, R. and Kim, S. G. (2006). Energy Harvesting MEMS Device Based on Thin Film Piezoelectric Cantilevers, Journal of Electroceramics 17: 543–548.CrossRefGoogle Scholar
  17. Cornwell, P. J., Goethal, J., Kowko, J. and Damianakis, M. (2005). Enhancing Power Harvesting Using a Tuned Auxiliary Structure, Journal of Intelligent Material Systems and Structures 16: 825–834.CrossRefGoogle Scholar
  18. duToit, N. E. and Wardle, B. L. (2006). Performance of Microfabricated Piezoelectric Vibration Energy Harvesters, Integrated Ferroelectrics 83: 13–32.CrossRefGoogle Scholar
  19. duToit, N. E. and Wardle, B. L. (2007). Experimental Verification of Models for Microfabricated Piezoelectric Vibration Energy Harvesters, AIAA Journal 45: 1126–1137.CrossRefGoogle Scholar
  20. duToit, N. E., Wardle, B. L. and Kim, S. G. (2005). Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters, Integrated Ferroelectrics 71: 121–160.CrossRefGoogle Scholar
  21. Elvin, N., Elvin, A. and Choi, D. H. (2003). A Self-Powered Damage Detection Sensor, Journal of Strain Analysis 38: 115–124.CrossRefGoogle Scholar
  22. Elvin, N. G., Elvin, A. A. and Spector, M. (2001). A Self-Powered Mechanical Strain Energy Sensor, Smart Materials and Structures 10: 293–299.CrossRefGoogle Scholar
  23. Elvin, N. G., Lajnef, N. and Elvin, A. A. (2006). Feasibility of Structural Monitoring with Vibration Powered Sensors, Smart Materials and Structures 15: 977–986.CrossRefGoogle Scholar
  24. Ericka, M., Vasic, D., Costa, F., Poulin, G. and Tliba, S. (2005). Energy Harvesting from Vibration Using a Piezoelectric Membrane, J. Phys. IV France 128: 187–193.CrossRefGoogle Scholar
  25. Fang, H. B., Liu, J. Q., Xu, Z. Y., Dong, L., Chen, D., Cai, B. C. and Liu, Y. (2006). A MEMS-Based Piezoelectric Power Generator for Low Frequency Vibration Energy Harvesting, Chinese Physics Letters 23: 732–734.CrossRefGoogle Scholar
  26. Feng, G. H. (2007). A Piezoelectric Dome-shaped-diaphragm Transducer for Microgenerator Applications, Smart Materials and Structures 16: 2636–2644.CrossRefGoogle Scholar
  27. Goldfarb, M. and Jones, L. D. (1999). On the Efficiency of Electric Power Generation with Piezoelectric Ceramic, Trans. ASME, Journal of Dynamic Systems, Measurement, and Control 121: 566–571.CrossRefGoogle Scholar
  28. Granstrom, J., Feenstra1, J., Sodano, H. A. and Farinholt, K. (2007). Energy Harvesting from a Backpack Instrumented with Piezoelectric Shoulder Straps, Smart Materials and Structures 16: 1810–1820.CrossRefGoogle Scholar
  29. Guan, M. J. and Liao, W. H. (2007). On the Efficiencies of Piezoelectric Energy Harvesting Circuits towards Storage Device Voltages, Smart Materials and Structures 16: 498–505.CrossRefGoogle Scholar
  30. Guigon, R., Chaillout, J. J., Jager, T. and Despesse, G. (2008a). Harvesting Raindrop Energy: Experimental Study, Smart Materials and Structures 17: 015039.CrossRefGoogle Scholar
  31. Guigon, R., Chaillout, J. J., Jager, T. and Despesse, G. (2008b). Harvesting Raindrop Energy: Theory, Smart Materials and Structures 17: 015038.CrossRefGoogle Scholar
  32. Guyomar, D., Badel, A., Lefeuvre, E. and Richard, C. (2005). Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 52: 584–595.CrossRefGoogle Scholar
  33. Hagood, N. W., Chung, W. H. and Flotow, A. V. (1990). Modelling of Piezoelectric Actuator Dynamics for Active Structural Control, Journal of Intelligent Material Systems and Structures 1: 327–354.CrossRefGoogle Scholar
  34. Horowitz, S. B., Sheplak, M., III, L. N. C. and Nishida, T. (2006). A MEMS Acoustic Energy Harvester, Journal of Micromechanics and Microengineering 16: S174–S181.Google Scholar
  35. Hu, H. P., Cao, J. G. and Cui, Z. J. (2007). Performance of a Piezoelectric Bimorph Harvester with Variable Width, Journal of Mechanics 23: 197–202.Google Scholar
  36. Hu, H. P., Xue, H. and Hu, Y. T. (2007a). A Spiral-Shaped Harvester with an Improved Harvesting Element and an Adaptive Storage Circuit, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 54: 1177–1187.CrossRefGoogle Scholar
  37. Hu, Y. T., Xue, H. and Hu, H. P. (2007b). A Piezoelectric Power Harvester with Adjustable Frequency through Axial Preloads, Smart Materials and Structures 16: 1961–1966.CrossRefGoogle Scholar
  38. Jeon, Y. B., Sood, R., Jeong, J. H. and Kim, S. G. (2005). MEMS Power Generator with Transverse Mode Thin Film PZT, Sensors and Actuators A 122: 16–22.CrossRefGoogle Scholar
  39. Jiang, S., Li, X., Guo, S., Hu, Y., Yang, J. and Jiang, Q. (2005). Performance of a Piezoelectric Bimorph for Scavenging Vibration Energy, Smart Materials and Structures 14: 769–774.CrossRefGoogle Scholar
  40. Johnson, T. J. and Clark, W. W. (2005). Harvesting Energy from Piezoelectric Material, IEEE Pervasive Computing 4: 70–71.Google Scholar
  41. Kansal, A. and Srivastava, M. B. (2005). Distributed Energy Harvesting for Energy-Neutral Sensor Networks, IEEE Pervasive Computing 4: 69–70.CrossRefGoogle Scholar
  42. Kim, H. W., Batra, A., Priya, S., Uchino, K., Markley, D., Newnham, R. E. and Hofmann, H. F. (2004). Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment, Japanese Journal of Applied Physics 43: 6178–6183.CrossRefGoogle Scholar
  43. Kim, H. W., Priya, S., Uchino, K. and Newnham, R. E. (2005). Piezoelectric Energy Harvesting under High Pre-Stressed Cyclic Vibrations, Journal of Electroceramics 15: 27–34.CrossRefGoogle Scholar
  44. Kim, S., Clark, W. W. and Wang, Q. M. (2005a). Piezoelectric Energy Harvesting with a Clamped Circular Plate: Analysis, Journal of Intelligent Material Systems and Structures 16: 847–854.CrossRefGoogle Scholar
  45. Kim, S., Clark, W. W. and Wang, Q. M. (2005b). Piezoelectric Energy Harvesting with a Clamped Circular Plate: Experimental Study, Journal of Intelligent Material Systems and Structures 16: 855–863.CrossRefGoogle Scholar
  46. Kuo, A. D. (2005). Harvesting Energy by Improving the Economy of Human Walking, Science 309: 1686–1687.CrossRefGoogle Scholar
  47. Lee, C. K., Hsu, Y. H., Hsiao, W. H. and Wu, J. W. J. (2004). Electrical and Mechanical Field Interactions of Piezoelectric Systems: foundation of smart structures-based piezoelectric sensors and actuators, and free-fall sensors, Smart Materials and Structures 13: 1090–1109.CrossRefGoogle Scholar
  48. Lefeuvre, E., Badel, A., Benayad, A., Lebrun, L., Richard, C. and Guyomar, D. (2005a). A Comparison between Several Approaches of Piezoelectric Energy Harvesting, Journal de Physique IV. France 128: 177–186.CrossRefGoogle Scholar
  49. Lefeuvre, E., Badel, A., Richard, C. and Guyomar, D. (2005b). Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction, Journal of Intelligent Material Systems and Structures 16: 865–876.CrossRefGoogle Scholar
  50. Lefeuvre, E., Badel, A., Richard, C., Petit, L. and Guyomar, D. (2006). A Comparison between Several Vibration-Powered Piezoelectric Generators for Standalone Systems, Sensors and Actuators A 126: 405–416.CrossRefGoogle Scholar
  51. Leland, E. S. and Wright, P. K. (2006). Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload, Smart Materials and Structures 15: 1413–1420.CrossRefGoogle Scholar
  52. Lesieutre, G. A. and Davis, C. L. (1997). Can a Coupling Coefficient of a Piezoelectric Device be Higher than Those of its Active Material?, Journal of Intelligent Material Systems and Structures 8: 859–867.CrossRefGoogle Scholar
  53. Lesieutre, G. A., Ottman, G. K. and Hofmann, H. F. (2004). Damping as a Result of Piezoelectric Energy Harvesting, Journal of Sound and Vibration 269: 991–1001.CrossRefGoogle Scholar
  54. Liao, W. H., Wang, D. H. and Huang, S. L. (2001). Wireless Monitoring of Cable Tension of Cable-Stayed Bridges Using PVDF Piezoelectric Films, Journal of Intelligent Material Systems and Structures 12: 331–339.CrossRefGoogle Scholar
  55. Liu, W. Q., Feng, Z. H., He, J. and Liu, R. B. (2007). Maximum Mechanical Energy Harvesting Strategy for a Piezoelement, Smart Materials and Structures 16: 2130–2136.CrossRefGoogle Scholar
  56. Lu, F., Lee, H. P. and Lim, S. P. (2004). Modeling and Analysis of Micro Piezoelectric Power Generators for Micro-Electro-Mechanical-Systems Applications, Smart Materials and Structures 13: 57–63.CrossRefGoogle Scholar
  57. Makihara, K., Onoda, J. and Miyakawa, T. (2006). Low Energy Dissipation Electric Circuit for Energy Harvesting, Smart Materials and Structures 15: 1493–1498.CrossRefGoogle Scholar
  58. Mateu, L. and Moll, F. (2005). Optimum Piezoelectric Bending Beam Structures for Energy Harvesting Using Shoe Inserts, Journal of Intelligent Material Systems and Structures 16: 835–845.CrossRefGoogle Scholar
  59. Mossi, K., Green, C., Ounaies, Z. and Hughes, E. (2005). Harvesting Energy Using a Thin Unimorph Prestressed Bender: Geometrical Effects, Journal of Intelligent Material Systems and Structures 16: 249–261.CrossRefGoogle Scholar
  60. Muriuki, M. G. and Clark, W. W. (2007). Analysis of a Technique for Tuning a Cantiliver Beam Resonator Using Shunt Switching, Smart Materials and Structures 16: 1527–1533.CrossRefGoogle Scholar
  61. Nakano, K., Elliott, S. J. and Rustighi, E. (2007). A Unified Approach to Optimal Conditions of Power Harvesting using Electromagnetic and Piezoelectric Transducers, Smart Materials and Structures 16: 948–958.CrossRefGoogle Scholar
  62. Ng, T. H. and Liao, W. H. (2005). Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor, Journal of Intelligent Material Systems and Structures 16: 785–797.CrossRefGoogle Scholar
  63. Ngo, K. D., Phipps, A., Nishida, T., Lin, J. and Xu, S. (2006). Power Converters for Piezoelectric Energy Extraction, Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, pp. IMECE2006–14343.Google Scholar
  64. Ottman, G. K., Hofmann, H. F., Bhatt, A. C. and Lesieutre, G. A. (2002). Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply, IEEE Transactions on Power Electronics 17: 669–676.CrossRefGoogle Scholar
  65. Ottman, G. K., Hofmann, H. F. and Lesieutre, G. A. (2003). Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode, IEEE Transactions on Power Electronics 18: 696–703.CrossRefGoogle Scholar
  66. Poulin, G., Sarraute, E. and Costa, F. (2004). Generation of Electric Energy for Portable Devices: Comparative Study of an Electromagnetic and a Piezoelectric system, Sensors and Actuators A 116: 461–471.CrossRefGoogle Scholar
  67. Prabhakar, S. and Vengallatore, S. (2007). Thermoelastic Damping in Bilayered Micromechanical Beam Resonators, Journal of Micromechanics and Microengineering 17: 532–538.CrossRefGoogle Scholar
  68. Priya, S. (2005). Modeling of Electric Energy Harvesting Using Piezoelectric Windmill, Applied Physics Letters 87: 184101.CrossRefGoogle Scholar
  69. Priya, S., Chen, C. T., Fye, D. and Zahnd, J. (2005). Piezoelectric Windmill: A Novel Solution to Remote Sensing, Japanese Journal of Applied Physics 44: L104–L107.CrossRefGoogle Scholar
  70. Rabaey, J. M., Ammer, M. J., da Silva Jr., J. L., Patel, D. and Roundy, S. (2000). PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking, Computer 33: 42–48.CrossRefGoogle Scholar
  71. Ramsay, M. J. and Clark, W. W. (2001). Piezoelectric Energy Harvesting for Bio MEMS Applications, Proceedings of the SPIE, Vol. 4332, pp. 429–438.Google Scholar
  72. Renaud, M., Fiorini, P. and Hoof, C. V. (2007). Optimization of a Piezoelectric Unimorph for Shock and Impact Energy Harvesting, Smart Materials and Structures 16: 1125–1135.CrossRefGoogle Scholar
  73. Richards, C. D., Anderson, M. J., Bahr, D. F. and Richards, R. F. (2004). Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component, Journal of Micromechanics and Microengineering 14: 717–721.CrossRefGoogle Scholar
  74. Richter, B., Twiefel, J., Hemsel, T. and Wallaschek, J. (2006). Model based Design of Piezoelectric Generators Utilizing Geometrical and Material Properties, Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, pp. IMECE2006–14862.Google Scholar
  75. Rome, L. C., Flynn, L., Goldman, E. M. and Yoo, T. D. (2005). Generating Electricity while Walking with Loads, Science 309: 1725–1728.CrossRefGoogle Scholar
  76. Roundy, S. (2005). On the Effectiveness of Vibration-Based Energy Harvesting, Journal of Intelligent Material Systems and Structures 16: 809–823.CrossRefGoogle Scholar
  77. Roundy, S., Leland, E. S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J. M., Wright, P. K. and Sundararajan, V. (2005). Improving Power Output for Vibration-Based Energy Scavengers, IEEE Pervasive Computing 4: 28–36.CrossRefGoogle Scholar
  78. Roundy, S., Steingart, D., Frechette, L., Wright, P. and Rabaey, J. (2004a). Power Sources for Wireless Sensor Networks, Lecture Notes in Computer Science 2920: 1–17.Google Scholar
  79. Roundy, S. and Wright, P. K. (2004). A Piezoelectric Vibration Based Generator for Wireless Electronics, Smart Materials and Structures 13: 1131–1142.CrossRefGoogle Scholar
  80. Roundy, S., Wright, P. K. and Rabaey, J. (2003). A Study of Low Level Vibrations as Power Source for Wireless Sensor Nodes, Computer Communications 26: 1131–1144.CrossRefGoogle Scholar
  81. Roundy, S., Wright, P. K. and Rabaey, J. M. (2004b). Energy Scavenging for Wireless Sensor Networks with Special Focus on Vibrations, Kluwer Academic Publishers, Boston.Google Scholar
  82. Sebald, G., Pruvost, S. and Guyomar, D. (2008). Energy Harvesting based on Ericsson Pyroelectric Cycles in a Relaxor Ferroelectric Ceramic, Smart Materials and Structures 15: 015012.CrossRefGoogle Scholar
  83. Shahruz, S. M. (2006). Design of Mechanical Band-Pass Filters with Large Frequency Bands for Energy Scavenging, Mechatronics 16: 523–531.CrossRefGoogle Scholar
  84. Shenck, N. S. and Paradiso, J. A. (2001). Energy Scavenging with Shoe-Mounted Piezoelectrics, IEEE Micro 21: 30–42.CrossRefGoogle Scholar
  85. Shu, Y. C. and Lien, I. C. (2006a). Analysis of Power Output for Piezoelectric Energy Harvesting Systems, Smart Materials and Structures 15: 1499–1512.CrossRefGoogle Scholar
  86. Shu, Y. C. and Lien, I. C. (2006b). Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System, Journal of Micromechanics and Microengineering 16: 2429–2438.CrossRefGoogle Scholar
  87. Shu, Y. C., Lien, I. C. and Wu, W. J. (2007). An Improved Analysis of the SSHI Interface in Piezoelectric Energy Harvesting, Smart Materials and Structures 16: 2253–2264.CrossRefGoogle Scholar
  88. Sodano, H. A., Inman, D. J. and Park, G. (2004). A Review of Power Harvesting from Vibration Using Piezoelectric Materials, The Shock and Vibration Digest 36: 197–205.CrossRefGoogle Scholar
  89. Sodano, H. A., Inman, D. J. and Park, G. (2005a). Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries, Journal of Intelligent Material Systems and Structures 16: 799–807.CrossRefGoogle Scholar
  90. Sodano, H. A., Inman, D. J. and Park, G. (2005b). Generation and Storage of Electricity from Power Harvesting Devices, Journal of Intelligent Material Systems and Structures 16: 67–75.CrossRefGoogle Scholar
  91. Sodano, H. A., Lloyd, J. and Inman, D. J. (2006). An Experimental Comparison between Several Active Composite Actuators for Power Generation, Smart Materials and Structures 15: 1211–1216.CrossRefGoogle Scholar
  92. Sodano, H. A., Park, G. and Inman, D. J. (2004). Estimation of Electric Charge Output for Piezoelectric Energy Harvesting, Journal of Strain 40: 49–58.CrossRefGoogle Scholar
  93. Starner, T. (1996). Human-Powered Wearable Computing, IBM Systems Journal 35: 618–629.CrossRefGoogle Scholar
  94. Stephen, N. G. (2006a). On Energy Harvesting from Ambient Vibration, Journal of Sound and Vibration 293: 409–425.CrossRefGoogle Scholar
  95. Stephen, N. G. (2006b). On Energy Harvesting from Ambient Vibration, Proceedings of the Institution of Mechanical Engineers Part C - Journal of Mechanical Engineering Science 220: 1261–1267.Google Scholar
  96. Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B. and Welsh, T. R. (2001). The Energy Harvesting Eel: A Small Subsurface Ocean/River Power Generator, IEEE Journal of Oceanic Engineering 26: 539–547.CrossRefGoogle Scholar
  97. Trolier-Mckinstry, S. and Muralt, P. (2004). Thin Film Piezoelectrics for MEMS, Journal of Electroceramics 12: 7–17.CrossRefGoogle Scholar
  98. Umeda, M., Nakamura, K. and Ueha, S. (1996). Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator, Japanese Journal of Applied Physics 35: 3267–3273.CrossRefGoogle Scholar
  99. Umeda, M., Nakamura, K. and Ueha, S. (1997). Energy Storage Characteristics of a Piezo-Generator Using Impact Induced Vibration, Japanese Journal of Applied Physics 36: 3146–3151.CrossRefGoogle Scholar
  100. Wang, Q. M. and Cross, L. E. (1999). Constitutive Equations of Symmetrical Triple Layer Piezoelectric Benders, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 46: 1343–1351.CrossRefGoogle Scholar
  101. Wang, Q. M., Du, X. H., Xu, B. and Cross, L. E. (1999). Electromechanical Coupling and Output Efficiency of Piezoelectric Bending Actuators, IEEE Transaction on Ultrasonics Ferroelectrics and Frequency Control 46: 638–646.CrossRefGoogle Scholar
  102. Wang, S., Lam, K. H., Sun, C. L., Kwok, K. W., Chan, H. L. W., Guo, M. S. and Zhao, X. Z. (2007). Energy Harvesting with Piezoelectric Drum Transducer, Applied Physics Letters 90: 113506.CrossRefGoogle Scholar
  103. Whalen, S., Thompson, M., Bahr, D., Richards, C. and Richards, R. (2003). Design, Fabrication and Testing of the P^3 Micro Heat Engine, Sensors and Actuators A 104: 290–298.CrossRefGoogle Scholar
  104. White, N. M., Glynne-Jones, P. and Beeby, S. P. (2001). A Novel Thick-Film Piezoelectric Micro-Generator, Smart Materials and Structures 10: 850–852.CrossRefGoogle Scholar
  105. Williams, C. B. and Yates, R. B. (1996). Analysis of a Micro-Electric Generator for Microsystems, Sensors and Actuators A 52: 8–11.CrossRefGoogle Scholar
  106. Xu, C. G., Fiez, T. S. and Mayaram, K. (2003). Nonlinear Finite Element Analysis of a Thin Piezoelectric Laminate for Micro Power Generation, Journal of Microelectromechanical Systems 12: 649–655.CrossRefGoogle Scholar
  107. Yang, J., Chen, Z. and Hu, Y. T. (2007). An Exact Analysis of a Rectangular Plate Piezoelectric Generator, IEEE Transaction on Ultrasonics Ferroelectrics and Frequency Control 54: 190–195.CrossRefGoogle Scholar
  108. Yeatman, E. M. (2007). Applications of MEMS in Power Sources and Circuits, Journal of Micromechanics and Microengineering 17: S184–S188.CrossRefGoogle Scholar
  109. Yoon, H. S., Washington, G. and Danak, A. (2005). Modeling, Optimization, and Design of Efficient Initially Curved Piezoceramic Unimorphs for Energy Harvesting Applications, Journal of Intelligent Material Systems and Structures 16: 877–888.CrossRefGoogle Scholar
  110. Zhao, X. and Lord, D. G. (2006). Application of the Villari Effect to Electric Power Harvesting, Journal of Applied Physics 99: 08M703.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yi-Chung Shu
    • 1
  1. 1.Institute of Applied MechanicsNational Taiwan UniversityTaiwan, ROC

Personalised recommendations