Skip to main content

Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters for Persistent Base Motions

  • Chapter

Abstract

This chapter investigates electromechanical modeling of cantilevered piezoelectric energy harvesters excited by persistent base motions. The modeling approaches are divided here into two sections as lumped parameter modeling and distributed parameter modeling. The first section discusses the amplitude-wise correction of the existing lumped parameter piezoelectric energy harvester model for base excitation. For cantilevers operating in the transverse and longitudinal vibration modes, it is shown that the conventional base excitation expression used in the existing lumped parameter models may yield highly inaccurate results in predicting the vibration response of the structure. Dimensionless correction factors are derived to improve the predictions of the coupled lumped parameter piezoelectric energy harvester model. The second section of this chapter presents coupled distributed parameter modeling of unimorph and bimorph cantilevers under persistent base excitations for piezoelectric energy harvesting. Closed-form solutions are obtained by considering all vibration modes and the formal representation of the direct and converse piezoelectric effects. Steady state electrical and mechanical response expressions are derived for arbitrary frequency excitations. These multi-mode solutions are then reduced to single-mode solutions for excitations around the modal frequencies. Finally, the analytical expressions derived here are validated experimentally for a cantilevered bimorph with a proof mass.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajitsaria J, Choe S Y, Shen D, and Kim D J 2007 Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation Smart Materials and Structures 16:447–454

    Article  Google Scholar 

  • Anton S R and Sodano H A 2007 A review of power harvesting using piezoelectric materials (2003–2006) Smart Materials and Structures 16:R1–R21

    Article  Google Scholar 

  • Arnold D 2007 Review of microscale magnetic power generation IEEE Transactions on Magnetics 43:3940–3951

    Article  Google Scholar 

  • Banks T L and Inman D J 1991 On damping mechanisms in beams ASME Journal of Applied Mechanics 58:716–723

    MATH  Google Scholar 

  • Beeby S P, Tudor M J, and White N M 2006 Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology 13:175–195

    Article  Google Scholar 

  • Chen S-N, Wang G–J, and Chien M-C 2006 Analytical modeling of piezoelectric vibration-induced micro power generator, Mechatronics 16:387–397

    Article  Google Scholar 

  • Clough R W and Penzien J 1975 Dynamics of Structures John Wiley and Sons, New York

    MATH  Google Scholar 

  • Cook-Chennault K A, Thambi N, and Sastry A M 2008 Powering MEMS portable devices – a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems, Smart Materials and Structures 17:043001:1–33

    Article  Google Scholar 

  • Crandall S H, Karnopp D C, Kurtz Jr E F, and Pridmore-Brown D C 1968 Dynamics of Mechanical and Electromechanical Systems McGraw-Hill, New York

    Google Scholar 

  • Daqaq M, Renno J M, Farmer J R, and Inman D J 2007 Effects of system parameters and damping on an optimal vibration-based energy harvester Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

    Google Scholar 

  • duToit N E, Wardle B L, and Kim S-G 2005 Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters, Integrated Ferroelectrics 71:121–160

    Article  Google Scholar 

  • duToit N E and Wardle B L 2007 Experimental verification of models for microfabricated piezoelectric vibration energy harvesters, AIAA Journal 45:1126–1137

    Article  Google Scholar 

  • Elvin N and Elvin A 2008 A general equivalent circuit model for piezoelectric generators, Journal of Intelligent Material Systems and Structures 19 in press (DOI: 10.1177/1045389X08089957)

    Google Scholar 

  • Erturk A and Inman D J 2008a On mechanical modeling of cantilevered piezoelectric vibration energy harvesters, Journal of Intelligent Material Systems and Structures 19:1311–1325

    Article  Google Scholar 

  • Erturk A and Inman D J 2008b Issues in mathematical modeling of piezoelectric energy harvesters, Smart Materials and Structures in press

    Google Scholar 

  • Erturk A and Inman D J 2008c A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters, ASME Journal of Vibration and Acoustics 130:041002-1-15

    Article  Google Scholar 

  • Erturk A and Inman D J 2008d An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Materials and Structures accepted

    Google Scholar 

  • Erturk A and Tarazaga P A, Farmer J R, and Inman D J 2008e Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams, ASME Journal of Vibration and Acoustics in press (DOI: 10.1115/1.2981094)

    Google Scholar 

  • Fang H-B, Liu J-Q, Xu Z-Y, Dong L, Chen D, Cai B-C, and Liu Y 2006 A MEMS-based piezoelectric power generator for low frequency vibration energy harvesting, Chinese Physics Letters 23:732–734

    Article  Google Scholar 

  • Glynne-Jones P, Tudor M J, Beeby S P, and White N M 2004 An electromagnetic, vibration-powered generator for intelligent sensor systems, Sensors and Actuators A 110:344–349

    Article  Google Scholar 

  • Hagood N W, Chung W H, and Von Flotow A 1990 Modelling of piezoelectric actuator dynamics for active structural control, Journal of Intelligent Material Systems and Structures 1:327–354

    Article  Google Scholar 

  • IEEE Standard on Piezoelectricity 1987 IEEE, New York.

    Google Scholar 

  • Jeon Y B, Sood R, Jeong J H, and Kim S 2005 MEMS power generator with transverse mode thin film PZT, Sensors & Actuators A 122:16–22

    Article  Google Scholar 

  • Lesieutre G A, Ottman G K, and Hofmann H F 2004 Damping as a result of piezoelectric energy harvesting, Journal of Sound and Vibration 269:991–1001

    Article  Google Scholar 

  • Lin J H, Wu X M, Ren T L, and Liu L T 2007 Modeling and simulation of piezoelectric MEMS energy harvesting device, Integrated Ferroelectrics 95:128–141.

    Article  Google Scholar 

  • Lu F, Lee H, and Lim S 2004 Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications, Smart Materials and Structures 13:57–63

    Article  Google Scholar 

  • Mitcheson P, Miao P, Start B, Yeatman E, Holmes A, and Green T 2004 MEMS electrostatic micro-power generator for low frequency operation, Sensors and Actuators A 115:523–529

    Article  Google Scholar 

  • Ottman G K, Hofmann H F, Bhatt A C, and Lesieutre G A 2002 Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, IEEE Transactions on Power Electronics 17:669–676.

    Article  Google Scholar 

  • Priya S 2007 Advances in energy harvesting using low profile piezoelectric transducers, Journal of Electroceramics 19:167–184

    Article  Google Scholar 

  • Roundy S, Wright P K, and Rabaey J 2002 Micro-electrostatic vibration-to-electricity converters Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition

    Google Scholar 

  • Roundy S, Wright P K, and Rabaey J 2003 A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications 26:1131–1144

    Article  Google Scholar 

  • Sodano H A, Inman D J, and Park G 2004a A review of power harvesting from vibration using piezoelectric materials, The Shock and Vibration Digest 36:197–205

    Article  Google Scholar 

  • Sodano H A, Park G, and Inman D J 2004b Estimation of electric charge output for piezoelectric energy harvesting, Strain 40:49–58

    Article  Google Scholar 

  • Sodano H, Inman D, and Park G 2005 Generation and storage of electricity from power harvesting devices, Journal of Intelligent Material Systems and Structures 16:67–75

    Article  Google Scholar 

  • Stephen N G 2006 On energy harvesting from ambient vibration, Journal of Sound and Vibration 293:409–425

    Article  Google Scholar 

  • Strutt J W (Lord Rayleigh) 1894 The Theory of Sound MacMillan Company, London

    MATH  Google Scholar 

  • Timoshenko S, Young D H, and Weaver W 1974 Vibration Problems in Engineering John Wiley and Sons, New York

    Google Scholar 

  • Williams C B and Yates R B 1996 Analysis of a micro-electric generator for microsystems, Sensors and Actuators A 52:8–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Erturk, A., Inman, D.J. (2009). Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters for Persistent Base Motions. In: Priya, S., Inman, D.J. (eds) Energy Harvesting Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76464-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76464-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76463-4

  • Online ISBN: 978-0-387-76464-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics