Skip to main content

Feasibility of an Implantable, Stimulated Muscle-Powered Piezoelectric Generator as a Power Source for Implanted Medical Devices

  • Chapter

Abstract

A piezoelectric energy generator that is driven by stimulated muscle and is\break implantable into the human body is under development for use as a self-replenishing power source for implanted electronic medical devices. The generator concept includes connecting a piezoelectric stack generator in series with a muscle tendon unit. The motor nerve is electrically activated causing muscle contraction force to strain the piezoelectric material resulting in charge generation that is stored in a load capacitor. Some of the generated charge is used to power the nerve stimulations and the excess is used to power an implanted device. The generator concept is based on the hypothesis that more electrical power can be converted from stimulated muscle contractions than is needed for the stimulations, a physiological phenomenon that to our knowledge has not previously been utilized. Such a generator is a potential solution\break to some of the limitations of power systems currently used with implanted devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • K. Araki, T. Nakatani, K. Toda, Y. Taenaka, E. Tatsumi, T. Masuzawa, Y. Baba, A. Yagura, Y. Wakisaka, K. Eya, Takano H, and Koga Y “Power of the fatigue resistant in situ latissimus dorsi muscle,” ASAIO J., vol. 41, no. 3, p. M768–M771, July, 1995.

    Google Scholar 

  • N. Bhadra, K. L. Kilgore, and P. H. Peckham, “Implanted stimulators for restoration of function in spinal cord injury,” Med. Eng Phys., vol. 23, no. 1, pp. 19–28, Jan, 2001.

    Google Scholar 

  • N. Bhadra and P. H. Peckham, “Peripheral nerve stimulation for restoration of motor function,” J. Clin. Neurophysiol.,vol. 14, no. 5, pp. 378–393, Sept, 1997.

    Google Scholar 

  • R. S. Cobbold, Transducers for Biomedical Measurements: Principles and Applications. New York: John Wiley & Sons, Inc.,1974, p. 486.

    Google Scholar 

  • G. V. Cochran, M. P. Kadaba, and V. R. Palmieri, “External ultrasound can generate microampere direct currents in vivo from implanted piezoelectric materials,” J. Orthop. Res.,vol. 6, no. 1, pp. 145–147, 1988.

    Article  Google Scholar 

  • G. H. Creasey, “Electrical stimulation of sacral roots for micturition after spinal cord injury,” Urol. Clin. North Am.,vol. 20, no. 3, pp. 505–515,Aug, 1993.

    Google Scholar 

  • J. C. Deharo and P. Djiane, “Pacemaker longevity. Replacement of the device,” Ann. Cardiol. Angeiol. (Paris), vol. 54, no. 1, pp. 26–31,Jan, 2005.

    Google Scholar 

  • J. Ding, L. W. Chou, T. M. Kesar, S. C. Lee, T. E. Johnston, A. S. Wexler, and S. A. Binder-Macleod, “Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injuries,” Muscle Nerve, vol. 36, no. 2, pp. 214–222, Aug, 2007.

    Google Scholar 

  • J. Ding, S. C. Lee, T. E. Johnston, A. S. Wexler, W. B. Scott, and S. A. Binder-Macleod, “Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries,” Muscle Nerve, vol. 31, no. 6, pp. 702–712, June, 2005.

    Google Scholar 

  • J. Ding, A. S. Wexler, and S. A. Binder-Macleod, “A predictive model of fatigue in human skeletal muscles,” J. Appl. Physiol, vol. 89, no. 4, pp. 1322–1332, Oct, 2000.

    Google Scholar 

  • N. Elvin, A.A. Elvin, and M. Spector, “A self-powered mechancial strain energy sensor,” Smart Mater. Struct.,vol. 10, pp. 293–299, 2001.

    Article  Google Scholar 

  • J. Feng, H. Yuan, and X. Zhang, “Promotion of osteogenesis by a piezoelectric biological ceramic,” Biomaterials, vol. 18, no. 23, pp. 1531–1534, Dec, 1997.

    Google Scholar 

  • T. Fukunaga, R. R. Roy, F. G. Shellock, J. A. Hodgson, M. K. Day, P. L. Lee, H. Kwong-Fu, and V. R. Edgerton, “Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging,” J. Orthop. Res.,vol. 10, no. 6, pp. 928–934, Nov, 1992.

    Google Scholar 

  • W. W. Glenn, M. L. Phelps, J. A. Elefteriades, B. Dentz, and J. F. Hogan, “Twenty years of experience in phrenic nerve stimulation to pace the diaphragm,” Pacing Clin. Electrophysiol.,vol. 9, no. 6 Pt 1, pp. 780–784, Nov, 1986.

    Google Scholar 

  • L. Griffin, S. Godfrey, and C. K. Thomas, “Stimulation pattern that maximizes force in paralyzed and control whole thenar muscles,” J. Neurophysiol.,vol. 87, no. 5, pp. 2271–2278, May, 2002.

    Google Scholar 

  • K. J. Gustafson, S. M. Marinache, G. D. Egrie, and S. H. Reichenbach, “Models of metabolic utilization predict limiting conditions for sustained power from conditioned skeletal muscle,” Ann. Biomed. Eng, vol. 34, no. 5, pp. 790–798, May, 2006.

    Google Scholar 

  • A. C. Guyton and J. E. Hall, Textbook of Medical Physiology. Philadelphia, PA: Elsevier/Saunders, 2000, p. 968.

    Google Scholar 

  • E. Hausler and L. Stein, “Implantable physiological power supply with PVDF film,” in Medical Applications of Piezoelectric Polymers. Galletti P. M.,De Rossi D. E., and De Reggi A. S., (Eds.) New York: Gordon and Breach Science Publishers, 1988, pp. 259–264.

    Google Scholar 

  • Z. Z. Karu, W. K. Durfee, and A. M. Barzilai, “Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains,” IEEE Trans. Biomed. Eng, vol. 42, no. 8, pp. 809–817, Aug, 1995.

    Google Scholar 

  • M. W. Keith, P. H. Peckham, G. B. Thrope, K. C. Stroh, B. Smith, J. R. Buckett, K. L. Kilgore, and J. W. Jatich, “Implantable functional neuromuscular stimulation in the tetraplegic hand,” J. Hand Surg. [Am.], vol. 14, no. 3, pp. 524–530, May, 1989.

    Google Scholar 

  • M. Kindermann, B. Schwaab, M. Berg, and G. Frohlig, “Longevity of dual chamber pacemakers: device and patient related determinants,” Pacing Clin. Electrophysiol.,vol. 24, no. 5, pp. 810–815, May, 2001.

    Google Scholar 

  • Ko W. H., “Piezoelectric energy converter for electronic implants,” Proc. Ann. Conf. on Eng. in Med. E. Biol. 8, 1966, p. 67.

    Google Scholar 

  • Ko W.H., “Power sources for implant telemetry and stimulation systems,” in A Handbook on Biotelemetry and Radio Tracking. Amlaner C.J. and MacDonald D., Eds. Elmsford, NY: Pergamon Press, Inc., 1980, pp. 225–245.

    Google Scholar 

  • Z. Lertmanorat, K. J. Gustafson, and D. M. Durand, “Electrode array for reversing the recruitment order of peripheral nerve stimulation: experimental studies,” Ann. Biomed. Eng, vol. 34, no. 1, pp. 152–160, Jan, 2006.

    Google Scholar 

  • B. E. Lewandowski, K. L. Kilgore, and K. J. Gustafson, “Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power,” Ann. Biomed. Eng, vol. 35, no. 4, pp. 631–641, Apr, 2007.

    Google Scholar 

  • K. Ljungstrom, K. Nilsson, J. Lidman, and C. Kjellman, “Medical implant with piezoelectric material in contact with body tissue,” United States Patent 6,571 130, May 27, 2003.

    Google Scholar 

  • W. S. Marras, M. J. Jorgensen, K. P. Granata, and B. Wiand, “Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI,” Clin. Biomech. (Bristol., Avon.), vol. 16, no. 1, pp. 38–46, Jan, 2001.

    Google Scholar 

  • W. Maurel, “3D Modeling of the human upper limb including the biomechancis of joints, muscles and soft tissues.” Ph.D. Ecole Polytechnique Federale de Lausanne, 1998.

    Google Scholar 

  • H. Mizuhara, T. Oda, T. Koshiji, T. Ikeda, K. Nishimura, S. Nomoto, K. Matsuda, N. Tsutsui, K. Kanda, and T. Ban, “A compressive type skeletal muscle pump as a biomechanical energy source,” ASAIO J., vol. 42, no. 5, p. M637–M641, Sep, 1996.

    Google Scholar 

  • “Modes of vibration for common piezoelectric ceramic shapes, http://www. americanpiezo.com/piezo_theory/chart2.html#,” 2005.

  • NSCISC “Spinal Cord Injury: Facts and Figures at a Glance from the National Spinal Cord Injury Statistical Center (NSCISC), http://www.spinalcord. uab.edu/show.asp?durki=21446,” 2006.

  • C. O. Olsen, S. J. Abert, D. D. Glower, J. A. Spratt, G. S. Tyson, J. W. Davis, and J. S. Rankin, “A hermetically sealed cardiac dimension transducer for long-term animal implantation,” Am. J. Physiol, vol. 247, no. 5 Pt 2, p. H857–H860, Nov, 1984.

    Google Scholar 

  • G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, “Optimized piezoelectric energy harvesting circuit using stepdown converter in discontinuous conduction mode,” IEEE Trans. Power Electron.,vol. 18, pp. 696–703, 2003.

    Article  Google Scholar 

  • T. Ozeki, T. Chinzei, Y. Abe, I. Saito, T. Isoyama, S. Mochizuki, M. Ishimaru, K. Takiura, A. Baba, T. Toyama, and K. Imachi, “Functions for detecting malposition of transcutaneous energy transmission coils,” ASAIO J.,vol. 49, no. 4, pp. 469–474, July, 2003.

    Google Scholar 

  • J. B. Park, B. J. Kelly, G. H. Kenner, A. F. von Recum, M. F. Grether, and W. W. Coffeen, “Piezoelectric ceramic implants: in vivo results,” J. Biomed. Mater. Res.,vol. 15, no. 1, pp. 103–110, Jan, 1981.

    Google Scholar 

  • J. B. Park, G. H. Kenner, S. D. Brown, and J. K. Scott, “Mechanical property changes of barium titanate (ceramic) after in vivo and in vitro aging,” Biomater. Med. Devices Artif. Organs, vol. 5, no. 3, pp. 267–276, 1977.

    Google Scholar 

  • J. B. Park, A. F. von Recum, G. H. Kenner, B. J. Kelly, W. W. Coffeen, and M. F. Grether, “Piezoelectric ceramic implants: a feasibility study,” J. Biomed. Mater. Res.,vol. 14, no. 3, pp. 269–277, May, 1980.

    Google Scholar 

  • F. Parmiggiani and R. B. Stein, “Nonlinear summation of contractions in cat muscles. II. Later facilitation and stiffness changes,” J. Gen. Physiol, vol. 78, no. 3, pp. 295–311, Sep, 1981.

    Google Scholar 

  • M. R. Pierrynowski, “Analytic representation of muscle line of action and geometry,” in Three-Dimensional Analysis of Human Movement. P. Allard, I. A. F. Stokes, and Blanchi J. P., Eds. Champaign, IL: Human Kinetics, 1995, pp. 215–256.

    Google Scholar 

  • R. Puers and G. Vandevoorde, “Recent progress on transcutaneous energy transfer for total artificial heart systems,” Artif. Organs, vol. 25, no. 5, pp. 400–405, May, 2001.

    Google Scholar 

  • S. Roundy, P. K. Wright, and J. M. Rabaey, Energy scavenging for wireless sensor networks. Norwell, MA: Kluwer Academic Publishers, 2004.

    Google Scholar 

  • D. R. Trumble, W. A. LaFramboise, C. Duan, and J. A. Magovern, “Functional properties of conditioned skeletal muscle: implications for muscle-powered cardiac assist,” Am. J. Physiol, vol. 273, no. 2 Pt 1, p. C588–C597, Aug, 1997.

    Google Scholar 

  • D. R. Trumble, D. B. Melvin, and J. A. Magovern, “Method for anchoring biomechanical implants to muscle tendon and chest wall,” ASAIO J.,vol. 48, no. 1, pp. 62–70, Jan, 2002.

    Google Scholar 

  • V. R. Vorperian, S. Lawrence, and K. Chlebowski, “Replacing abdominally implanted defibrillators: effect of procedure setting on cost,” Pacing Clin. Electrophysiol.,vol. 22, no. 5, pp. 698–705, May, 1999.

    Google Scholar 

  • A. S. Wexler, J. Ding, and S. A. Binder-Macleod, “A mathematical model that predicts skeletal muscle force,” IEEE Trans. Biomed. Eng, vol. 44, no. 5, pp. 337–348, May, 1997.

    Google Scholar 

  • H. P. Zenner, H. Leysieffer, M. Maassen, R. Lehner, T. Lenarz, J. Baumann, S. Keiner, P. K. Plinkert, and J. T. McElveen, Jr., “Human studies of a piezoelectric transducer and a microphone for a totally implantable electronic hearing device,” Am. J. Otol., vol. 21, no. 2, pp. 196–204, Mar, 2000.

    Google Scholar 

  • H. P. Zenner, A. Limberger, J. W. Baumann, G. Reischl, I. M. Zalaman, P. S. Mauz, R. W. Sweetow, P. K. Plinkert, R. Zimmermann, I. Baumann, M. H. De, H. Leysieffer, and M. M. Maassen, “Phase III results with a totally implantable piezoelectric middle ear implant: speech audiometry, spatial hearing and psychosocial adjustment,” Acta Otolaryngol.,vol. 124, no. 2, pp. 155–164, Mar, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lewandowski, B., Kilgore, K.L., Gustafson, K. (2009). Feasibility of an Implantable, Stimulated Muscle-Powered Piezoelectric Generator as a Power Source for Implanted Medical Devices. In: Priya, S., Inman, D.J. (eds) Energy Harvesting Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76464-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76464-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76463-4

  • Online ISBN: 978-0-387-76464-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics