Feasibility of an Implantable, Stimulated Muscle-Powered Piezoelectric Generator as a Power Source for Implanted Medical Devices

  • B.E. Lewandowski
  • K. L. Kilgore
  • K.J. Gustafson


A piezoelectric energy generator that is driven by stimulated muscle and is\break implantable into the human body is under development for use as a self-replenishing power source for implanted electronic medical devices. The generator concept includes connecting a piezoelectric stack generator in series with a muscle tendon unit. The motor nerve is electrically activated causing muscle contraction force to strain the piezoelectric material resulting in charge generation that is stored in a load capacitor. Some of the generated charge is used to power the nerve stimulations and the excess is used to power an implanted device. The generator concept is based on the hypothesis that more electrical power can be converted from stimulated muscle contractions than is needed for the stimulations, a physiological phenomenon that to our knowledge has not previously been utilized. Such a generator is a potential solution\break to some of the limitations of power systems currently used with implanted devices.


Spinal Cord Injury Piezoelectric Material Functional Electrical Stimulation Spinal Cord Injure Input Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Araki, T. Nakatani, K. Toda, Y. Taenaka, E. Tatsumi, T. Masuzawa, Y. Baba, A. Yagura, Y. Wakisaka, K. Eya, Takano H, and Koga Y “Power of the fatigue resistant in situ latissimus dorsi muscle,” ASAIO J., vol. 41, no. 3, p. M768–M771, July, 1995.Google Scholar
  2. N. Bhadra, K. L. Kilgore, and P. H. Peckham, “Implanted stimulators for restoration of function in spinal cord injury,” Med. Eng Phys., vol. 23, no. 1, pp. 19–28, Jan, 2001.Google Scholar
  3. N. Bhadra and P. H. Peckham, “Peripheral nerve stimulation for restoration of motor function,” J. Clin. Neurophysiol.,vol. 14, no. 5, pp. 378–393, Sept, 1997.Google Scholar
  4. R. S. Cobbold, Transducers for Biomedical Measurements: Principles and Applications. New York: John Wiley & Sons, Inc.,1974, p. 486.Google Scholar
  5. G. V. Cochran, M. P. Kadaba, and V. R. Palmieri, “External ultrasound can generate microampere direct currents in vivo from implanted piezoelectric materials,” J. Orthop. Res.,vol. 6, no. 1, pp. 145–147, 1988.CrossRefGoogle Scholar
  6. G. H. Creasey, “Electrical stimulation of sacral roots for micturition after spinal cord injury,” Urol. Clin. North Am.,vol. 20, no. 3, pp. 505–515,Aug, 1993.Google Scholar
  7. J. C. Deharo and P. Djiane, “Pacemaker longevity. Replacement of the device,” Ann. Cardiol. Angeiol. (Paris), vol. 54, no. 1, pp. 26–31,Jan, 2005.Google Scholar
  8. J. Ding, L. W. Chou, T. M. Kesar, S. C. Lee, T. E. Johnston, A. S. Wexler, and S. A. Binder-Macleod, “Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injuries,” Muscle Nerve, vol. 36, no. 2, pp. 214–222, Aug, 2007.Google Scholar
  9. J. Ding, S. C. Lee, T. E. Johnston, A. S. Wexler, W. B. Scott, and S. A. Binder-Macleod, “Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries,” Muscle Nerve, vol. 31, no. 6, pp. 702–712, June, 2005.Google Scholar
  10. J. Ding, A. S. Wexler, and S. A. Binder-Macleod, “A predictive model of fatigue in human skeletal muscles,” J. Appl. Physiol, vol. 89, no. 4, pp. 1322–1332, Oct, 2000.Google Scholar
  11. N. Elvin, A.A. Elvin, and M. Spector, “A self-powered mechancial strain energy sensor,” Smart Mater. Struct.,vol. 10, pp. 293–299, 2001.CrossRefGoogle Scholar
  12. J. Feng, H. Yuan, and X. Zhang, “Promotion of osteogenesis by a piezoelectric biological ceramic,” Biomaterials, vol. 18, no. 23, pp. 1531–1534, Dec, 1997.Google Scholar
  13. T. Fukunaga, R. R. Roy, F. G. Shellock, J. A. Hodgson, M. K. Day, P. L. Lee, H. Kwong-Fu, and V. R. Edgerton, “Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging,” J. Orthop. Res.,vol. 10, no. 6, pp. 928–934, Nov, 1992.Google Scholar
  14. W. W. Glenn, M. L. Phelps, J. A. Elefteriades, B. Dentz, and J. F. Hogan, “Twenty years of experience in phrenic nerve stimulation to pace the diaphragm,” Pacing Clin. Electrophysiol.,vol. 9, no. 6 Pt 1, pp. 780–784, Nov, 1986.Google Scholar
  15. L. Griffin, S. Godfrey, and C. K. Thomas, “Stimulation pattern that maximizes force in paralyzed and control whole thenar muscles,” J. Neurophysiol.,vol. 87, no. 5, pp. 2271–2278, May, 2002.Google Scholar
  16. K. J. Gustafson, S. M. Marinache, G. D. Egrie, and S. H. Reichenbach, “Models of metabolic utilization predict limiting conditions for sustained power from conditioned skeletal muscle,” Ann. Biomed. Eng, vol. 34, no. 5, pp. 790–798, May, 2006.Google Scholar
  17. A. C. Guyton and J. E. Hall, Textbook of Medical Physiology. Philadelphia, PA: Elsevier/Saunders, 2000, p. 968.Google Scholar
  18. E. Hausler and L. Stein, “Implantable physiological power supply with PVDF film,” in Medical Applications of Piezoelectric Polymers. Galletti P. M.,De Rossi D. E., and De Reggi A. S., (Eds.) New York: Gordon and Breach Science Publishers, 1988, pp. 259–264.Google Scholar
  19. Z. Z. Karu, W. K. Durfee, and A. M. Barzilai, “Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains,” IEEE Trans. Biomed. Eng, vol. 42, no. 8, pp. 809–817, Aug, 1995.Google Scholar
  20. M. W. Keith, P. H. Peckham, G. B. Thrope, K. C. Stroh, B. Smith, J. R. Buckett, K. L. Kilgore, and J. W. Jatich, “Implantable functional neuromuscular stimulation in the tetraplegic hand,” J. Hand Surg. [Am.], vol. 14, no. 3, pp. 524–530, May, 1989.Google Scholar
  21. M. Kindermann, B. Schwaab, M. Berg, and G. Frohlig, “Longevity of dual chamber pacemakers: device and patient related determinants,” Pacing Clin. Electrophysiol.,vol. 24, no. 5, pp. 810–815, May, 2001.Google Scholar
  22. Ko W. H., “Piezoelectric energy converter for electronic implants,” Proc. Ann. Conf. on Eng. in Med. E. Biol. 8, 1966, p. 67.Google Scholar
  23. Ko W.H., “Power sources for implant telemetry and stimulation systems,” in A Handbook on Biotelemetry and Radio Tracking. Amlaner C.J. and MacDonald D., Eds. Elmsford, NY: Pergamon Press, Inc., 1980, pp. 225–245.Google Scholar
  24. Z. Lertmanorat, K. J. Gustafson, and D. M. Durand, “Electrode array for reversing the recruitment order of peripheral nerve stimulation: experimental studies,” Ann. Biomed. Eng, vol. 34, no. 1, pp. 152–160, Jan, 2006.Google Scholar
  25. B. E. Lewandowski, K. L. Kilgore, and K. J. Gustafson, “Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power,” Ann. Biomed. Eng, vol. 35, no. 4, pp. 631–641, Apr, 2007.Google Scholar
  26. K. Ljungstrom, K. Nilsson, J. Lidman, and C. Kjellman, “Medical implant with piezoelectric material in contact with body tissue,” United States Patent 6,571 130, May 27, 2003.Google Scholar
  27. W. S. Marras, M. J. Jorgensen, K. P. Granata, and B. Wiand, “Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI,” Clin. Biomech. (Bristol., Avon.), vol. 16, no. 1, pp. 38–46, Jan, 2001.Google Scholar
  28. W. Maurel, “3D Modeling of the human upper limb including the biomechancis of joints, muscles and soft tissues.” Ph.D. Ecole Polytechnique Federale de Lausanne, 1998.Google Scholar
  29. H. Mizuhara, T. Oda, T. Koshiji, T. Ikeda, K. Nishimura, S. Nomoto, K. Matsuda, N. Tsutsui, K. Kanda, and T. Ban, “A compressive type skeletal muscle pump as a biomechanical energy source,” ASAIO J., vol. 42, no. 5, p. M637–M641, Sep, 1996.Google Scholar
  30. “Modes of vibration for common piezoelectric ceramic shapes, http://www.,” 2005.
  31. NSCISC “Spinal Cord Injury: Facts and Figures at a Glance from the National Spinal Cord Injury Statistical Center (NSCISC), http://www.spinalcord.,” 2006.
  32. C. O. Olsen, S. J. Abert, D. D. Glower, J. A. Spratt, G. S. Tyson, J. W. Davis, and J. S. Rankin, “A hermetically sealed cardiac dimension transducer for long-term animal implantation,” Am. J. Physiol, vol. 247, no. 5 Pt 2, p. H857–H860, Nov, 1984.Google Scholar
  33. G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, “Optimized piezoelectric energy harvesting circuit using stepdown converter in discontinuous conduction mode,” IEEE Trans. Power Electron.,vol. 18, pp. 696–703, 2003.CrossRefGoogle Scholar
  34. T. Ozeki, T. Chinzei, Y. Abe, I. Saito, T. Isoyama, S. Mochizuki, M. Ishimaru, K. Takiura, A. Baba, T. Toyama, and K. Imachi, “Functions for detecting malposition of transcutaneous energy transmission coils,” ASAIO J.,vol. 49, no. 4, pp. 469–474, July, 2003.Google Scholar
  35. J. B. Park, B. J. Kelly, G. H. Kenner, A. F. von Recum, M. F. Grether, and W. W. Coffeen, “Piezoelectric ceramic implants: in vivo results,” J. Biomed. Mater. Res.,vol. 15, no. 1, pp. 103–110, Jan, 1981.Google Scholar
  36. J. B. Park, G. H. Kenner, S. D. Brown, and J. K. Scott, “Mechanical property changes of barium titanate (ceramic) after in vivo and in vitro aging,” Biomater. Med. Devices Artif. Organs, vol. 5, no. 3, pp. 267–276, 1977.Google Scholar
  37. J. B. Park, A. F. von Recum, G. H. Kenner, B. J. Kelly, W. W. Coffeen, and M. F. Grether, “Piezoelectric ceramic implants: a feasibility study,” J. Biomed. Mater. Res.,vol. 14, no. 3, pp. 269–277, May, 1980.Google Scholar
  38. F. Parmiggiani and R. B. Stein, “Nonlinear summation of contractions in cat muscles. II. Later facilitation and stiffness changes,” J. Gen. Physiol, vol. 78, no. 3, pp. 295–311, Sep, 1981.Google Scholar
  39. M. R. Pierrynowski, “Analytic representation of muscle line of action and geometry,” in Three-Dimensional Analysis of Human Movement. P. Allard, I. A. F. Stokes, and Blanchi J. P., Eds. Champaign, IL: Human Kinetics, 1995, pp. 215–256.Google Scholar
  40. R. Puers and G. Vandevoorde, “Recent progress on transcutaneous energy transfer for total artificial heart systems,” Artif. Organs, vol. 25, no. 5, pp. 400–405, May, 2001.Google Scholar
  41. S. Roundy, P. K. Wright, and J. M. Rabaey, Energy scavenging for wireless sensor networks. Norwell, MA: Kluwer Academic Publishers, 2004.Google Scholar
  42. D. R. Trumble, W. A. LaFramboise, C. Duan, and J. A. Magovern, “Functional properties of conditioned skeletal muscle: implications for muscle-powered cardiac assist,” Am. J. Physiol, vol. 273, no. 2 Pt 1, p. C588–C597, Aug, 1997.Google Scholar
  43. D. R. Trumble, D. B. Melvin, and J. A. Magovern, “Method for anchoring biomechanical implants to muscle tendon and chest wall,” ASAIO J.,vol. 48, no. 1, pp. 62–70, Jan, 2002.Google Scholar
  44. V. R. Vorperian, S. Lawrence, and K. Chlebowski, “Replacing abdominally implanted defibrillators: effect of procedure setting on cost,” Pacing Clin. Electrophysiol.,vol. 22, no. 5, pp. 698–705, May, 1999.Google Scholar
  45. A. S. Wexler, J. Ding, and S. A. Binder-Macleod, “A mathematical model that predicts skeletal muscle force,” IEEE Trans. Biomed. Eng, vol. 44, no. 5, pp. 337–348, May, 1997.Google Scholar
  46. H. P. Zenner, H. Leysieffer, M. Maassen, R. Lehner, T. Lenarz, J. Baumann, S. Keiner, P. K. Plinkert, and J. T. McElveen, Jr., “Human studies of a piezoelectric transducer and a microphone for a totally implantable electronic hearing device,” Am. J. Otol., vol. 21, no. 2, pp. 196–204, Mar, 2000.Google Scholar
  47. H. P. Zenner, A. Limberger, J. W. Baumann, G. Reischl, I. M. Zalaman, P. S. Mauz, R. W. Sweetow, P. K. Plinkert, R. Zimmermann, I. Baumann, M. H. De, H. Leysieffer, and M. M. Maassen, “Phase III results with a totally implantable piezoelectric middle ear implant: speech audiometry, spatial hearing and psychosocial adjustment,” Acta Otolaryngol.,vol. 124, no. 2, pp. 155–164, Mar, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • B.E. Lewandowski
    • 1
    • 2
  • K. L. Kilgore
  • K.J. Gustafson
  1. 1.NASA Glenn Research CenterBioscience and Technology BranchClevelandUSA
  2. 2.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations