Materials for High-energy Density Batteries

  • Arumugam Manthiram


Lithium-ion batteries have emerged as the choice of rechargeable power source as they offer much higher energy density than other systems. However, their performance factors such as energy density, power density, and cycle life depend on the electrode materials employed. This chapter provides an overview of the cathode and anode materials systems for lithium-ion batteries. After providing a brief introduction to the basic principles involved in lithium-ion cells, the structure-property-performance relationships of cathode materials like layered LiMO2 (M = Mn, Co, and Ni) and their soiled solutions, spinel LiMn2O4, and olivine LiFePO4 are presented. Then, a brief account of the carbon, alloy, oxide, and nanocomposite anode materials is presented.


Lithium Insertion Rechargeable Lithium Batterie Irreversible Capacity Loss Volumetric Energy Density Hollow Carbon Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham KM, Pasquariello DM, Willstaedt EB (1990) Preparation and characterization of some lithium insertion anodes for secondary lithium batteries. J Electrochem Soc 137: 743–749.CrossRefGoogle Scholar
  2. Armstrong R, Holzapfel M, Novak P, Johnson,CS, Kang, SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li 0.2 Mn 0.6]O 2. J Am Chem Soc 128: 8694–8698.CrossRefGoogle Scholar
  3. Arunkumar TA, Alvarez E, Manthiram A (2007a) Structural, chemical, and electrochemical characterization of layered Li[Li0.17Mn0.33Co0.5-yNiy]O 2 cathodes. J Electrochem Soc 154: A770–A775.Google Scholar
  4. Arunkumar TA, Manthiram A (2005) Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5-yNi0.5-zMy+ zO4 (M=Li, Mg, Fe, Co, and Zn). Electrochem Solid State Lett 8: A403–A405.CrossRefGoogle Scholar
  5. Arunkumar TA, Wu Y, Manthiram A (2007b) Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O 2-Li[M]O2\ (M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solution. Chem Mater 19: 3067–3073.Google Scholar
  6. Auborn JJ, Barbeiro YL (1987) Lithium intercalation cells without metallic lithium. J Electrochem Soc 134: 638–641.CrossRefGoogle Scholar
  7. Aydinol MK, Ceder G (1997) First-principles prediction of insertion potentials in Li-Mn oxides for secondary Li batteries. J Electrochem Soc 144: 3832–3835.CrossRefGoogle Scholar
  8. Brousse T, Retoux R, Herterich U, Schleich DM (1998) Thin-film crystalline SnO2-lithium electrodes. J Electrochem Soc 145: 1–4.CrossRefGoogle Scholar
  9. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Cui Y (2008a) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3: 31–35.CrossRefGoogle Scholar
  10. Chan CK, Zhang XF, Cui Y (2008b) High capacity Li ion battery anodes using Ge nanowires. Nano Lett 8: 307–309.CrossRefGoogle Scholar
  11. Cho J, Kim YJ, Kim TJ, Park B. (2001a) Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew Chem Int Ed Engl 40: 3367–3369.CrossRefGoogle Scholar
  12. Cho J, Kim YJ, Park B (2001b) LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase. J Electrochem Soc 148: A1110–A1115.CrossRefGoogle Scholar
  13. Choi J, Alvarez E, Arunkumar TA, Manthiram A (2006), Proton insertion into oxide cathodes during chemical delithiation. Electrochem Solid State Lett 9: A241–A244.CrossRefGoogle Scholar
  14. Choi J, Manthiram A (2004) Comparison of the electrochemical behaviors of stoichiometric LiNi1/3Co1/3Mn1/3O2 and lithium excess Li1.03(Ni1/3Co1/3Mn1/3)0.97O2. Electrochem Solid State Lett 7: A365–A368.CrossRefGoogle Scholar
  15. Choi W, Manthiram A (2006) Superior capacity retention spinel oxyfluoride cathodes for lithium ion batteries. Electrochem Solid State Lett 9: A245–A248.CrossRefGoogle Scholar
  16. Choi W, Manthiram A (2007) Factors controlling the fluorine content and the electrochemical performance of spinel oxyfluoride cathodes. J Electrochem Soc 154: A792–A797.CrossRefGoogle Scholar
  17. Courtney IA, Dahn JR (1997) Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144: 2045–2052.CrossRefGoogle Scholar
  18. Chung SY, Bloking JT, Chiang YM, (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater 1: 123–128.CrossRefGoogle Scholar
  19. Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270: 590–593.CrossRefGoogle Scholar
  20. Deng D, Lee JY (2008) Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem Mater 20: 1841–1846.CrossRefGoogle Scholar
  21. Ellis B, Kan WH, Makahnouk WRM, Nazar LF (2007) Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem 17: 3248–3254.CrossRefGoogle Scholar
  22. Ferg E, Gummow RJ, de Kock A, Thackeray MM (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141: L147–L150.CrossRefGoogle Scholar
  23. Gabano JP (1983) Lithium batteries. Academic Press, London.Google Scholar
  24. Goodenough JB, Mizushima K, Takeda T (1980) Solid-solution oxides for storage-battery electrodes. Jap J Appl Phys Suppl 19–3: 305–313.Google Scholar
  25. Hassoun J, Reale P, Scrosati B (2007) Recent advances in liquid and polymer lithium-ion batteries. J Mater Chem 17: 3668–3677.CrossRefGoogle Scholar
  26. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276: 1395–1397.CrossRefGoogle Scholar
  27. Julien C, Nazri, GA (1994) Solid state batteries: materials design and optimization. Kluwer, Boston, MA.Google Scholar
  28. Kannan AM, Manthiram A (2002) Surface/chemically modified LiMn2O 4 cathodes for lithium-ion batteries. Electrochem Solid State Lett 5: A167–A169.CrossRefGoogle Scholar
  29. Kepler KD, Vaughey JT, Thackeray MM (1999) LixCu6Sn5 (0<x<13): an intermetallic insertion electrode for rechargeable lithium batteries. Electrochem Solid State Lett 2: 307–309.CrossRefGoogle Scholar
  30. Kim DH, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid State Lett 9: A439–A442.CrossRefGoogle Scholar
  31. Kim DW, Hwang IS, Kwon SJ, Kang HY, Park KS, Choi YJ, Choi KJ, Park JG (2007) Highly conductive coaxial SnO2-In2O 3 heterostructured nanowires for Li ion battery electrodes. Nano Lett 7: 3041–3045.CrossRefGoogle Scholar
  32. Linden D (ed) (1995) Handbook of batteries. 2nd ed., McGraw Hill, New York.Google Scholar
  33. Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li[NixLi1/3–2x/3Mn2/3–x/3}]O2. J Electrochem Soc 149: A778–A791.Google Scholar
  34. Mabuchi A, Tokumitsu K, Fujimoto H, Kasuh T (1995) Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures. J Electrochem Soc. 142: 1041–1046.CrossRefGoogle Scholar
  35. MacKinnon MR, Dahn JR (1999) On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J Electrochem Soc 146: 59–68.CrossRefGoogle Scholar
  36. Manthiram A, Goodenough JB (1987) Lithium insertion into Fe2(MO4)3 frameworks: comparison of M=W with M=Mo. J Solid State Chem 71: 349–360.CrossRefGoogle Scholar
  37. Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3-type frameworks. J Power Sources 26: 403–406.CrossRefGoogle Scholar
  38. Megahed S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51: 79–104.CrossRefGoogle Scholar
  39. Mizushima K, Jones PC, Wiseman PJ, Goodenough, JB (1980) Li_xCoO2 (0< x<-1): a new cathode material for batteries of high energy density. Mat Res Bull 15: 783–789.CrossRefGoogle Scholar
  40. Nazri GA, Pistoia G (eds) (2003) Science and technology of lithium batteries. Kluwer Academic Publishers, Boston, MA.Google Scholar
  41. Padhi AK, Nanjundasawamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144: 1188–1194.CrossRefGoogle Scholar
  42. Park S, Han Y, Kang Lee PS, Ahn S, Lee H, Lee J (2001) Electrochemical properties of LiCoO2-coated LiMn2O 4 prepared by solution-based chemical process. J Electrochem Soc 148: A680–A686.CrossRefGoogle Scholar
  43. Pistoia G (ed) (1994) Lithium batteries: new materials, developments and perspectives. Vol. 5, Elsevier, Amsterdam.Google Scholar
  44. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407: 496–499.CrossRefGoogle Scholar
  45. Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139: 2091–2097.CrossRefGoogle Scholar
  46. Sato K, Noguchi M, Demachi A, Oki N, Endo M, (1994) A mechanism of lithium storage in disordered carbons. Science 264: 556–558.CrossRefGoogle Scholar
  47. Shin Y, Manthiram A (2003) High rate, superior capacity retention LiMn2-2yLiyNiyO4 spinel cathodes for lithium ion batteries. Electrochem Solid State Lett 6: A34–A36.CrossRefGoogle Scholar
  48. Souza DCS, Pralong V, Jacobson AJ, Nazar LF (2002) A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science 296, 2012–2015.Google Scholar
  49. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature, 414: 359–367.CrossRefGoogle Scholar
  50. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mat Res Bull 18: 461–472.CrossRefGoogle Scholar
  51. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO 3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17: 3112–3125.CrossRefGoogle Scholar
  52. Vadivel Murugan A, Muraliganth T, Manthiram A (2008), Rapid, size-controlled, microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochem Commun 10: 903–906.CrossRefGoogle Scholar
  53. Vaughey JT, Kepler KD, Benedek R, Thackeray MM (1999) NiAs- versus zinc-blende-type intermetallic insertion electrodes for lithium batteries: lithium extraction from Li2CuSn. Electrochem Comm 1: 517–521.CrossRefGoogle Scholar
  54. Venkatasetty HV (1984) Lithium battery technology. John Wiley, New York.Google Scholar
  55. Venkatraman S, Shin Y, Manthiram A (2003) Phase relationships and structural and chemical stabilities of charged Li1-xCoO2-δ and Li1-xNi0.85Co0.15O2-δ. Electrochem Solid State Lett 6: A9–A12.CrossRefGoogle Scholar
  56. Wakihara M, Yamamoto O (ed) (1998) Lithium ion batteries: fundamentals and performance. Wiley-VCH, Weinheim.Google Scholar
  57. Wen Z, Wang Q, Zhang Q, Li J (2007) In-situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv Funct Mater 17: 2772–2778.CrossRefGoogle Scholar
  58. Winter M, Besenhard JO, Spahr ME, Noväk P (1998), Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10: 725–763.CrossRefGoogle Scholar
  59. Whittingham MS, Jacobson AJ (1982) Intercalation chemistry. Academic Press, New York.Google Scholar
  60. Wu Y, Vadivel Murugan A, Manthiram A (2008) Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. J Electrochem Soc 155: A635-A641.CrossRefGoogle Scholar
  61. Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high performance anode material in lithium ion batteries. Adv Mater 20: 1160–1165.CrossRefGoogle Scholar
  62. Zheng T, Xue JS, Dahn JR (1996) Lithium insertion in hydrogen-containing carbonaceous materials. Chem Mater 8: 389–393.CrossRefGoogle Scholar
  63. Zhong Q, Banakdarpour A, Zhang M, Gao Y, Dahn JR (1997) Synthesis and electrochemistry of LiNixMn2-xO4. J Electrochem Soc 144: 205–213.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Arumugam Manthiram
    • 1
  1. 1.Electrochemical Energy Laboratory, Materials Science and Engineering ProgramThe University of Texas at AustinAustinUSA

Personalised recommendations