Skip to main content

Materials for High-energy Density Batteries

  • Chapter
Energy Harvesting Technologies
  • 19k Accesses

Abstract

Lithium-ion batteries have emerged as the choice of rechargeable power source as they offer much higher energy density than other systems. However, their performance factors such as energy density, power density, and cycle life depend on the electrode materials employed. This chapter provides an overview of the cathode and anode materials systems for lithium-ion batteries. After providing a brief introduction to the basic principles involved in lithium-ion cells, the structure-property-performance relationships of cathode materials like layered LiMO2 (M = Mn, Co, and Ni) and their soiled solutions, spinel LiMn2O4, and olivine LiFePO4 are presented. Then, a brief account of the carbon, alloy, oxide, and nanocomposite anode materials is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham KM, Pasquariello DM, Willstaedt EB (1990) Preparation and characterization of some lithium insertion anodes for secondary lithium batteries. J Electrochem Soc 137: 743–749.

    Article  Google Scholar 

  • Armstrong R, Holzapfel M, Novak P, Johnson,CS, Kang, SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li 0.2 Mn 0.6]O 2. J Am Chem Soc 128: 8694–8698.

    Article  Google Scholar 

  • Arunkumar TA, Alvarez E, Manthiram A (2007a) Structural, chemical, and electrochemical characterization of layered Li[Li0.17Mn0.33Co0.5-yNiy]O 2 cathodes. J Electrochem Soc 154: A770–A775.

    Google Scholar 

  • Arunkumar TA, Manthiram A (2005) Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5-yNi0.5-zMy+ zO4 (M=Li, Mg, Fe, Co, and Zn). Electrochem Solid State Lett 8: A403–A405.

    Article  Google Scholar 

  • Arunkumar TA, Wu Y, Manthiram A (2007b) Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O 2-Li[M]O2\ (M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solution. Chem Mater 19: 3067–3073.

    Google Scholar 

  • Auborn JJ, Barbeiro YL (1987) Lithium intercalation cells without metallic lithium. J Electrochem Soc 134: 638–641.

    Article  Google Scholar 

  • Aydinol MK, Ceder G (1997) First-principles prediction of insertion potentials in Li-Mn oxides for secondary Li batteries. J Electrochem Soc 144: 3832–3835.

    Article  Google Scholar 

  • Brousse T, Retoux R, Herterich U, Schleich DM (1998) Thin-film crystalline SnO2-lithium electrodes. J Electrochem Soc 145: 1–4.

    Article  Google Scholar 

  • Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Cui Y (2008a) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3: 31–35.

    Article  Google Scholar 

  • Chan CK, Zhang XF, Cui Y (2008b) High capacity Li ion battery anodes using Ge nanowires. Nano Lett 8: 307–309.

    Article  Google Scholar 

  • Cho J, Kim YJ, Kim TJ, Park B. (2001a) Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew Chem Int Ed Engl 40: 3367–3369.

    Article  Google Scholar 

  • Cho J, Kim YJ, Park B (2001b) LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase. J Electrochem Soc 148: A1110–A1115.

    Article  Google Scholar 

  • Choi J, Alvarez E, Arunkumar TA, Manthiram A (2006), Proton insertion into oxide cathodes during chemical delithiation. Electrochem Solid State Lett 9: A241–A244.

    Article  Google Scholar 

  • Choi J, Manthiram A (2004) Comparison of the electrochemical behaviors of stoichiometric LiNi1/3Co1/3Mn1/3O2 and lithium excess Li1.03(Ni1/3Co1/3Mn1/3)0.97O2. Electrochem Solid State Lett 7: A365–A368.

    Article  Google Scholar 

  • Choi W, Manthiram A (2006) Superior capacity retention spinel oxyfluoride cathodes for lithium ion batteries. Electrochem Solid State Lett 9: A245–A248.

    Article  Google Scholar 

  • Choi W, Manthiram A (2007) Factors controlling the fluorine content and the electrochemical performance of spinel oxyfluoride cathodes. J Electrochem Soc 154: A792–A797.

    Article  Google Scholar 

  • Courtney IA, Dahn JR (1997) Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144: 2045–2052.

    Article  Google Scholar 

  • Chung SY, Bloking JT, Chiang YM, (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater 1: 123–128.

    Article  Google Scholar 

  • Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270: 590–593.

    Article  Google Scholar 

  • Deng D, Lee JY (2008) Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem Mater 20: 1841–1846.

    Article  Google Scholar 

  • Ellis B, Kan WH, Makahnouk WRM, Nazar LF (2007) Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem 17: 3248–3254.

    Article  Google Scholar 

  • Ferg E, Gummow RJ, de Kock A, Thackeray MM (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141: L147–L150.

    Article  Google Scholar 

  • Gabano JP (1983) Lithium batteries. Academic Press, London.

    Google Scholar 

  • Goodenough JB, Mizushima K, Takeda T (1980) Solid-solution oxides for storage-battery electrodes. Jap J Appl Phys Suppl 19–3: 305–313.

    Google Scholar 

  • Hassoun J, Reale P, Scrosati B (2007) Recent advances in liquid and polymer lithium-ion batteries. J Mater Chem 17: 3668–3677.

    Article  Google Scholar 

  • Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276: 1395–1397.

    Article  Google Scholar 

  • Julien C, Nazri, GA (1994) Solid state batteries: materials design and optimization. Kluwer, Boston, MA.

    Google Scholar 

  • Kannan AM, Manthiram A (2002) Surface/chemically modified LiMn2O 4 cathodes for lithium-ion batteries. Electrochem Solid State Lett 5: A167–A169.

    Article  Google Scholar 

  • Kepler KD, Vaughey JT, Thackeray MM (1999) LixCu6Sn5 (0<x<13): an intermetallic insertion electrode for rechargeable lithium batteries. Electrochem Solid State Lett 2: 307–309.

    Article  Google Scholar 

  • Kim DH, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid State Lett 9: A439–A442.

    Article  Google Scholar 

  • Kim DW, Hwang IS, Kwon SJ, Kang HY, Park KS, Choi YJ, Choi KJ, Park JG (2007) Highly conductive coaxial SnO2-In2O 3 heterostructured nanowires for Li ion battery electrodes. Nano Lett 7: 3041–3045.

    Article  Google Scholar 

  • Linden D (ed) (1995) Handbook of batteries. 2nd ed., McGraw Hill, New York.

    Google Scholar 

  • Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li[NixLi1/3–2x/3Mn2/3–x/3}]O2. J Electrochem Soc 149: A778–A791.

    Google Scholar 

  • Mabuchi A, Tokumitsu K, Fujimoto H, Kasuh T (1995) Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures. J Electrochem Soc. 142: 1041–1046.

    Article  Google Scholar 

  • MacKinnon MR, Dahn JR (1999) On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J Electrochem Soc 146: 59–68.

    Article  Google Scholar 

  • Manthiram A, Goodenough JB (1987) Lithium insertion into Fe2(MO4)3 frameworks: comparison of M=W with M=Mo. J Solid State Chem 71: 349–360.

    Article  Google Scholar 

  • Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3-type frameworks. J Power Sources 26: 403–406.

    Article  Google Scholar 

  • Megahed S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51: 79–104.

    Article  Google Scholar 

  • Mizushima K, Jones PC, Wiseman PJ, Goodenough, JB (1980) Li_xCoO2 (0< x<-1): a new cathode material for batteries of high energy density. Mat Res Bull 15: 783–789.

    Article  Google Scholar 

  • Nazri GA, Pistoia G (eds) (2003) Science and technology of lithium batteries. Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  • Padhi AK, Nanjundasawamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144: 1188–1194.

    Article  Google Scholar 

  • Park S, Han Y, Kang Lee PS, Ahn S, Lee H, Lee J (2001) Electrochemical properties of LiCoO2-coated LiMn2O 4 prepared by solution-based chemical process. J Electrochem Soc 148: A680–A686.

    Article  Google Scholar 

  • Pistoia G (ed) (1994) Lithium batteries: new materials, developments and perspectives. Vol. 5, Elsevier, Amsterdam.

    Google Scholar 

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407: 496–499.

    Article  Google Scholar 

  • Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139: 2091–2097.

    Article  Google Scholar 

  • Sato K, Noguchi M, Demachi A, Oki N, Endo M, (1994) A mechanism of lithium storage in disordered carbons. Science 264: 556–558.

    Article  Google Scholar 

  • Shin Y, Manthiram A (2003) High rate, superior capacity retention LiMn2-2yLiyNiyO4 spinel cathodes for lithium ion batteries. Electrochem Solid State Lett 6: A34–A36.

    Article  Google Scholar 

  • Souza DCS, Pralong V, Jacobson AJ, Nazar LF (2002) A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science 296, 2012–2015.

    Google Scholar 

  • Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature, 414: 359–367.

    Article  Google Scholar 

  • Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mat Res Bull 18: 461–472.

    Article  Google Scholar 

  • Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO 3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17: 3112–3125.

    Article  Google Scholar 

  • Vadivel Murugan A, Muraliganth T, Manthiram A (2008), Rapid, size-controlled, microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochem Commun 10: 903–906.

    Article  Google Scholar 

  • Vaughey JT, Kepler KD, Benedek R, Thackeray MM (1999) NiAs- versus zinc-blende-type intermetallic insertion electrodes for lithium batteries: lithium extraction from Li2CuSn. Electrochem Comm 1: 517–521.

    Article  Google Scholar 

  • Venkatasetty HV (1984) Lithium battery technology. John Wiley, New York.

    Google Scholar 

  • Venkatraman S, Shin Y, Manthiram A (2003) Phase relationships and structural and chemical stabilities of charged Li1-xCoO2-δ and Li1-xNi0.85Co0.15O2-δ. Electrochem Solid State Lett 6: A9–A12.

    Article  Google Scholar 

  • Wakihara M, Yamamoto O (ed) (1998) Lithium ion batteries: fundamentals and performance. Wiley-VCH, Weinheim.

    Google Scholar 

  • Wen Z, Wang Q, Zhang Q, Li J (2007) In-situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv Funct Mater 17: 2772–2778.

    Article  Google Scholar 

  • Winter M, Besenhard JO, Spahr ME, Noväk P (1998), Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10: 725–763.

    Article  Google Scholar 

  • Whittingham MS, Jacobson AJ (1982) Intercalation chemistry. Academic Press, New York.

    Google Scholar 

  • Wu Y, Vadivel Murugan A, Manthiram A (2008) Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. J Electrochem Soc 155: A635-A641.

    Article  Google Scholar 

  • Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high performance anode material in lithium ion batteries. Adv Mater 20: 1160–1165.

    Article  Google Scholar 

  • Zheng T, Xue JS, Dahn JR (1996) Lithium insertion in hydrogen-containing carbonaceous materials. Chem Mater 8: 389–393.

    Article  Google Scholar 

  • Zhong Q, Banakdarpour A, Zhang M, Gao Y, Dahn JR (1997) Synthesis and electrochemistry of LiNixMn2-xO4. J Electrochem Soc 144: 205–213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Manthiram, A. (2009). Materials for High-energy Density Batteries. In: Priya, S., Inman, D.J. (eds) Energy Harvesting Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76464-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76464-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76463-4

  • Online ISBN: 978-0-387-76464-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics