Piezoelectric Energy Harvesting

  • Hyunuk Kim
  • Yonas Tadesse
  • Shashank Priya


This chapter provides the introductory information on piezoelectric energy harvesting covering various aspects such as modeling, selection of materials, vibration harvesting device design using bulk and MEMS approach, and energy harvesting circuits. All these characteristics are illustrated through selective examples. A simple step-by-step procedure is presented to design the cantilever beam based energy harvester by incorporating piezoelectric material at maximum stress points in first and second resonance modes. Suitable piezoelectric material for vibration energy harvesting is characterized by the large magnitude of product of the piezoelectric voltage constant (g) and the piezoelectric strain constant (d) given as (d· g). The condition for obtaining large magnitude of d·g has been shown to be as |d| =εn, where ε is the permittivity of the material and n is a material parameter having lower limit of 0.5. The material can be in the form of polycrystalline ceramics, textured ceramics, thin films, and polymers. A brief coverage of various material systems is provided in all these categories. Using these materials different transducer structures can be fabricated depending upon the desired frequency and vibration amplitude such as multilayer, MFC, bimorph, amplified piezoelectric actuator, QuickPack, rainbow, cymbal, and moonie. The concept of multimodal energy harvesting is introduced at the end of the chapter. This concept provides the opportunity for further enhancement of power density by combining two different energy-harvesting schemes in one system such that one assists the other.


Cantilever Beam Piezoelectric Property Energy Harvesting Piezoelectric Plate Wireless Sensor Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, CW, Park, HY, Nahm, S, et al. (2007) Structural variation and piezoelectric properties of 0.95(Na0.5K 0.5)NbO3–0.05BaTiO3 ceramics. Sens. Actuators A 136: 255CrossRefGoogle Scholar
  2. Anton, SR and Sodano, HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16: R1–R21.CrossRefGoogle Scholar
  3. Beeby, SP, Tudor, MJ, and White, NM (2006) Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17: R175–R195.CrossRefGoogle Scholar
  4. Blevins, RD (1979) Formulas for natural frequencies and mode shape. Robert E. Krieger Publishing, Malabar, Florida, USA.Google Scholar
  5. Chen, QX and Payne, DA (1995) Industrial applications of piezoelectric polymer transducers. Meas. Sci. Technol. 6: 249–267.CrossRefGoogle Scholar
  6. Cho, KH, Park, HY, Ahn, CW, Nahm, S, Lee, HG, and Lee, HJ (2007) Microstructure and piezoelectric properties of 0.95(Na0.5K 0.5)NbO3–0.05SrTiO3 ceramics. J. Am. Ceram. Soc. 90 [6]: 1946–1949.CrossRefGoogle Scholar
  7. Dong, S, Zhai, J, Li, J, and Viehland, D (2006) Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 89: 252904.CrossRefGoogle Scholar
  8. Dong, SX, Li, JF, and Viehland, D (2003) Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory. IEEE Trans. Ultrason. Ferroelec. Freq. Control 50 [10]: 1253–1261.CrossRefGoogle Scholar
  9. Dong, SX, Li, JF, and Viehland, D (2004) Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: experiments. IEEE Trans. Ultrason. Ferroelec. Freq. Control 51 [7]: 794–799.Google Scholar
  10. Dong, SX, Zhai, J, Li, JF, and Viehland, D (2006) Small dc magnetic field response of magnetoelectric laminate composites. J. Appl. Phys. 88: 082907.Google Scholar
  11. Dong, SX, Zhai, J, Wang, N, Bai, F et al. (2005) Fe-Ga/Pb(Mg1/3Nb 2/3)O3-PbTiO3 magnetoelectric laminate composites. Appl. Phys. Lett. 87: 222504.CrossRefGoogle Scholar
  12. Erturk, A and Inman, DJ (2007) Mechanical considerations for modeling of vibration-based energy harvester. Proc.IDETC/CIE 2007.Google Scholar
  13. Fukuda, E and Yasuda, J (1964) Jpn. J. Appl. Phys. 3: 117.CrossRefGoogle Scholar
  14. Glang, R, Holmwood, RA, and Rosenfeld, RL (1965) Rev. Sci. Instrum. 36, 7.Google Scholar
  15. Gonzalez, JL, Rubio, A, and Moll, F (2002) Human powered piezoelectric batteries to supply power of wereables electronic devices. Int. J. Soc. Mater. Eng. Resour. 10 [1]: 34–40.Google Scholar
  16. Guo, S and Lee, H (2007) An efficiency-enhanced integrated CMOS rectifier with comparator-controlled switches for transcutaneous powered implants. Proc. IEEE Custom Integrated Circuits Conference, Sep. 2007, 385–388.Google Scholar
  17. Guo, Y, Kakimoto, K, and Ohsato, H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K 0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85: 4121–4123.CrossRefGoogle Scholar
  18. Guyomar, D, Badel, A, Lefeuvre, E, and Richard, C (2005) IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52: 584–595.CrossRefGoogle Scholar
  19. Harsanji, G (1995) Polymer films in sensor applications, Technomic Publishing Co., Lancaster, PA.Google Scholar
  20. Islam, RA, Priya, S (2006a) Realization of high-energy density polycrystalline piezoelectric ceramics. Appl. Phys. Lett. 88: 032903.CrossRefGoogle Scholar
  21. Islam, RA, Priya, S (2006b) High energy density composition in the system PZT – PZNN. J. Amer. Ceram. Soc. 89: 3147–3156.CrossRefGoogle Scholar
  22. Jia, Y, Or, SW, et al. (2006) Converse magnetoelectric effect in laminated composites of PMN–PT single crystal and Terfenol-D alloy. Appl. Phys. Lett. 88: 242902.CrossRefGoogle Scholar
  23. Kim, H, Priya, S, Stephanou, H, and Uchino, K (2007) Consideration of impedance matching techniques for efficient piezoelectric energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54: 1851–1859.CrossRefGoogle Scholar
  24. Kim,H (2008) Design and fabrication of piezoelectric microgenerator using laser micromachining and MEMS techniques, MS Thesis, UT Arlington.Google Scholar
  25. Kim, H, Bedekar, V, Islam, R, Lee, WH, Leo, D, and Priya, S. (2008) Laser micro-machined piezoelectric cantilevers for mechanical energy harvesting. IEEE Ultrason. Freq. Ferroelect. Cntrl. 55: 1900–1905.CrossRefGoogle Scholar
  26. Koyabashi, T, Shimanuki, S, Saitoh, S, and Yamashita, Y, (1997) Jpn. J. Appl. Phys. 36: 6035.CrossRefGoogle Scholar
  27. Kuwata, J, Uchino, K, and Nomura, S (1981) Ferroelectrics 37: 579.Google Scholar
  28. Kuwata, J, Uchino, K, and Nomura, S (1982) Jpn. J. Appl. Phys. 21: 1298.CrossRefGoogle Scholar
  29. Laura, PAA, Pombo, JL, and Susemihl, EA (1974) A note on the vibration of clamped-free beam with a mass at the free end. J. Sound and Vib. 37(2): 161–168.CrossRefGoogle Scholar
  30. Lee, CK and Moon, FC (1990) Modal sensors/actuators. Trans. ASME, J. Appl. Mech. 57:434–441.Google Scholar
  31. Lee, CK (1990) Theory of laminated piezoelectric plates for the design of distributed sensors/actuators, Part I and II. J. Acoust. Soc. Am. 89: 1144–1158.CrossRefGoogle Scholar
  32. Lee, H and Mok, PKT A SC voltage doubler with pseudo-continuous output regulation using a three-stage switchable opamp. IEEE International Solid-State Circuits Conference Dig. Tech. Papers, Feb. 2005, 288–289.Google Scholar
  33. Liu, Y, Ren, KL, Hofmann, HF, and Zhang, Q (2005) IEEE Trans. Ultrason. Ferroelec. Freq. Control. 52: 2411–2417.CrossRefGoogle Scholar
  34. Mathuna, CO, O’Donnell, T, Matrtinez-Catala, RV, et al. (2008) Talanta 75: 613–624.CrossRefGoogle Scholar
  35. Ming, BQ, Wang, JF, Qi, P, and Zang, GZ (2007) Piezoelectric properties of (Li, Sb, Ta) modified (Na,K)NbO3 lead-free Ceramics. J. Appl. Phys. 101: 054103CrossRefGoogle Scholar
  36. Mulvihill, ML, Park, SE, Risch, G, Li, Z, Uchino, K, Shrout, TR, (1996) Jpn. J. Appl. Phys. 35: 3984.CrossRefGoogle Scholar
  37. Muralt, P (2000) J. Micromech. Microeng. 10: 136.CrossRefGoogle Scholar
  38. Muralt, P, Baborowski, J, and Ledermann, N (2002) Piezoelectric micro-electromechanical systems with PbZrxTi 1-xO3 Thin Films: Integration and Application Issues, in Piezoelectric Materials in Devices, Ed. N. Setter, EPFL Swiss Federal Institute of Technology, Lausanne,Switzerland.Google Scholar
  39. Muriuki, MG (2004) An Investigation into the Design and Control of Tunable Piezoelectric Resonators Ph.D. thesis, University of Pittsburgh, PA.Google Scholar
  40. Nayfeh, AH and Mook, D Nonlinear Oscillations (Wiley, New York, 1979).Google Scholar
  41. Newnham, RE (1986) Composite Electroceramics. Ferroelectrics 68: 1–32.Google Scholar
  42. Ohigashi, H (1988) Ultrasonic Transducers in the Megahertz Range, The Application of Ferroelectric Polymers, Ed. T. T. Wang, J. M. Herbert and A. M. Glass, Chapman and Hall, NY.Google Scholar
  43. Paradiso, J and Starner, T (2005) Energy Scavenging for Mobile and Wireless Electronics.Pervasive Computing, Jan–March: 18–27.Google Scholar
  44. Park, S and Shrout, TR (1997a) IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44: 1140.CrossRefGoogle Scholar
  45. Park, S and Shrout, TR (1997b) J. Appl. Phys. 82: 1804.CrossRefGoogle Scholar
  46. Park, S and Shrout, TR (1997c) Mater. Res. Innovations 1: 20.CrossRefGoogle Scholar
  47. Park, HY, Ahn, CW, Song, HC, Lee, JH, Nahm, S, et al. (2006) Microstructure and piezoelectric properties of 0.95(Na0.5K 0.5)NbO3–0.05BaTiO3 ceramics. Appl. Phys. Lett. 89: 062906CrossRefGoogle Scholar
  48. Poulin, G, Sarraute, E and Costa, F (2004) Generation of electrical energy for portable devices Comparative study of an electromagnetic and piezoelectric system. J. Sens. Actuators A 116: 461–471.CrossRefGoogle Scholar
  49. Priya, S (2005) Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 87: 184101.CrossRefGoogle Scholar
  50. Priya, S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19:165–182.Google Scholar
  51. Priya, S, Popa, D, and Lewis, F (2006) Energy efficient mobile wireless sensor networks. ASME Congress 2006, Nov. 5–10, Chicago, Illinois, IMECE2006-14078.Google Scholar
  52. Priya, S, Viehland, D, Carazo, AV, Ryu, J, and Uchino, K, (2001) J. Appl. Phys. 90: 1469.CrossRefGoogle Scholar
  53. Raghunathan, V, Kansal, A, Hsu, J, Friedman, J, Srivastava, MB (2005) Design considerations for solar energy harvesting wireless embedded systems. IEEE International Symp. on Information Processing in Sensor Networks (IPSN), April 2005 (TR-UCLA-NESL-200503-10).Google Scholar
  54. Roundy, S and Wright, PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13: 1131–1142.CrossRefGoogle Scholar
  55. Roundy, S, Leland, ES, Baker, J, Carleton, E, Reilly, E, Lai, E, Otis, B, Rabaey, JM, Wright, PK, and Sundararajan, V (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput. 4 [1] January–March: 28–36.Google Scholar
  56. Roundy, S, Wright, PK, and Rabaey, J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26 [11]: 1131–1144.CrossRefGoogle Scholar
  57. Ryu, J, Priya, S, and Uchino, K (2002) Magnetoelectric laminate composites of piezoelectric and magnetostrictive materials. J. Electroceram. 8: 107–119.CrossRefGoogle Scholar
  58. Shrout, TR, and Zhang, SJ, (2007) Lead-free piezoelectric ceramics: Alternatives for PZT?. J. Electroceram. 19: 111–124.Google Scholar
  59. Smolorz, S and Grill, W (1995) Focusing PVDF transducers for acoustic microscopy. Research in Nondestructive Evaluation, Springer-Verlag, NY, Vol. 7: 195–201.CrossRefGoogle Scholar
  60. Sodano, H, Inman, DJ and Park, G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Digest. 36: 197–205.CrossRefGoogle Scholar
  61. Srinivasan, G, Rasmussen, E, Levin, B, and Hayes, R (2002) Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B 65: 134402.CrossRefGoogle Scholar
  62. Srinivasan, G, Rasmussen, ET, and Hayes, R (2003) Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: The influence of zinc substitution in ferrites. Phys. Rev. B 67 [1]: 014418.CrossRefGoogle Scholar
  63. Starner, T and Paradiso, JA (2004) Human-Generated Power for Mobile Electronics. Low-power electronics design, C. Piguet, ed., CRC Press, Chapter 45, 1–35.Google Scholar
  64. Tadesse, Y, Zhang, S, and Priya, S (May 2008 submitted) Multimodal energy harvesting system: piezoelectric and electromagnetic. J. Intell. Mater. Syst. Struct. (In press)Google Scholar
  65. Takenaka, T and Nagata, H (2005) Current status and prospects of lead-free. piezoelectric ceramics. J. Eur. Ceram. Soc. 25: 2693–2700.CrossRefGoogle Scholar
  66. Troiler-Mckinstry, S and Muralt, P (2004) Thin film piezoelectrics for MEMS. J. Electroceram. 12: 7–17.CrossRefGoogle Scholar
  67. Wan, JG, Liu, JM, Wang, GH, and Nan, CW (2006) Electric-field-induced magnetization in Pb(Zr,Ti)O3/Terfenol-D composite structures. Appl. Phys. Lett. 88: 182502.CrossRefGoogle Scholar
  68. Williams, CB and Yates, RB (1996) Analysis of micro electric generator for micro-electric generator for microsystems. J. Sens. Actuator A 52:8–11.CrossRefGoogle Scholar
  69. Wolf, RA and Troiler-McKinstry, S (2004) Temperature dependence of the piezoelectric response in lead zirconate titanate films. J. Appl. Phys. 95, 1397–406.CrossRefGoogle Scholar
  70. Yuan, Y, Zhang, S, Zhou, X, and Liu, J (2006) Phase transition and temperature dependences of electrical properties of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 ceramics. Jpn. J. Appl. Phys. 45:831–834.CrossRefGoogle Scholar
  71. Zang, GZ, Wang, JF et al. (2006) Perovskite (Na0.5K 0.5)1-x(LiSb)xNb1-xO3 lead-free piezoceramics. Appl. Phys. Lett. 88: 212908.CrossRefGoogle Scholar
  72. Zhang, S, Lebrun, L, Randall, CA, and Shrout, TR (2004) Growth and electrical properties of (Mn,F) co-doped 0.92Pb(Zn1/3Nb 2/3)O3-0.08PbTiO3 single crystal. J. Crystal Growth 267: 204–212.CrossRefGoogle Scholar
  73. Zhao, P, Zhang, BP, and Li, JF (2007) Enhancing piezoelectric d33 coefficient in Li/Ta-codoped lead-free (Na,K)NbO3 ceramics by compensating Na and K at a fixed ratio. Appl. Phys. Lett. 91: 172901.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hyunuk Kim
    • 1
  • Yonas Tadesse
  • Shashank Priya
  1. 1.Center for Intelligent Material Systems and Structures Center for Energy Harvesting Materials and Systems Virginia TechBlacksburg

Personalised recommendations