Advertisement

Negative Electrodes in Lithium Cells

Early work on the commercial development of rechargeable lithium batteries to operate at or near ambient temperatures involved the use of elemental lithium as the negative electrode reactant. As discussed later, this leads to significant problems. Negative electrodes currently employed on the negative side of lithium cells involve a solid solution of lithium in one of the forms of carbon.

Lithium cells that operate at temperatures above the melting point of lithium must necessarily use alloys instead of elemental lithium. These are generally binary or ternary metallic phases.

Keywords

Graphene Layer Solid State Ionic Negative Electrode Lithium Batterie Electroactive Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Huggins and D. Elwell, J. Cryst. Growth 37, 159 (1977)CrossRefGoogle Scholar
  2. 2.
    C. Wagner, J. Electrochem. Soc. 101, 225 (1954)CrossRefGoogle Scholar
  3. 3.
    C. Wagner, J. Electrochem. Soc. 103, 571 (1956)CrossRefGoogle Scholar
  4. 4.
    G. Deublein and R.A. Huggins, Solid State Ionics 18/19, 1110 (1986)CrossRefGoogle Scholar
  5. 5.
    U. von Sacken, E. Nodwell and J.R. Dahn, Solid State Ionics 69, 284 (1994)CrossRefGoogle Scholar
  6. 6.
    M. Winter, K.-C. Moeller and J.O. Besenhard, Carbonaceous and Graphitic Anodes, in Lithium Batteries, Science and Technology, ed. by G.-A. Nazri and G. Pistoia, Kluwer Academic, Boston, MA (2004), p. 144Google Scholar
  7. 7.
    J.R. Dahn, A.K. Sleigh, H. Shi, B.M. Way, W.J. Weydanz, J.N. Reimers, Q. Zhong and U. von Sacken, Carbons and Graphites as Substitutes for the Lithium Anode, in Lithium Batteries, ed. by G. Pistoia, Elsevier, Amsterdam (1994), p. 1Google Scholar
  8. 8.
    K. Fredenhagen and G. Cadenbach, Z. Anorg. Allg. Chem. 158, 249 (1926)CrossRefGoogle Scholar
  9. 9.
    D. Guerard, A. Herold, Carbon 13, 337 (1975)CrossRefGoogle Scholar
  10. 10.
    G.K. Wertheim, P.M.Th.M. Van Attekum and S. Basu, Solid State Commun. 33, 1127 (1980)CrossRefGoogle Scholar
  11. 11.
    L.B. Ebert, Intercalation Compounds of Graphite, in Annual Review of Materials Science, Vol. 6, ed. by R.A. Huggins, Annual Reviews, Palo Alto, CA (1976), p. 181Google Scholar
  12. 12.
    J.O. Besenhard and H.P. Fritz, J. Electroanal. Chem. 53, 329 (1974)CrossRefGoogle Scholar
  13. 13.
    R. Yazami and P. Touzain, J. Power Sources 9, 365 (1983)CrossRefGoogle Scholar
  14. 14.
    S. Basu, U.S. Patent No. 4,304,825, Dec. 8, 1981Google Scholar
  15. 15.
    S. Basu, U.S. Patent No. 4,423,125, Dec. 27, 1983Google Scholar
  16. 16.
    T. Nagaura and K. Tozawa, in Progress in Batteries and Solar Cells, Vol. 9, ed. by JEC Press and IBA, JEC Press, Brunswick, OH (1990), p. 209Google Scholar
  17. 17.
    T. Nagaura, in Progress in Batteries and Solar Cells, Vol. 10, JEC Press, Brunswick, OH (1991), p. 218Google Scholar
  18. 18.
    R.E. Franklin, Proc. R. Soc (Lond) A209, 196 (1951)CrossRefGoogle Scholar
  19. 19.
    N. Daumas and A. Herold, C.R. Acad. Sci. C 286, 373 (1969)Google Scholar
  20. 20.
    T. Zheng, Y. Liu, E.W. Fuller, S. Tseng, U. von Sacken and J.R. Dahn, J. Electrochem. Soc. 142, 2581 (1995)CrossRefGoogle Scholar
  21. 21.
    T. Zheng, J.S. Xue and J.R. Dahn, Chem. Mater. 8, 389 (1996)CrossRefGoogle Scholar
  22. 22.
    T. Zheng, W.R. McKinnon and J.R. Dahn, Hysteresis During Lithium Insertion in Hydrogen-Containing Carbons, J. Electrochem. Soc. 143, 2137 (1996)CrossRefGoogle Scholar
  23. 23.
    N.P Yao, L.A. Heredy and R.C. Saunders, J. Electrochem. Soc. 118, 1039 (1971)CrossRefGoogle Scholar
  24. 24.
    E.C. Gay, et al., J. Electrochem. Soc. 123, 1591 (1976)CrossRefGoogle Scholar
  25. 25.
    S.C. Lai, J. Electrochem. Soc. 123, 1196 (1976)CrossRefGoogle Scholar
  26. 26.
    R.A. Sharma and R.N. Seefurth, J. Electrochem Soc. 123, 1763 (1976)CrossRefGoogle Scholar
  27. 27.
    R.N. Seefurth and R.A. Sharma, J. Electrochem. Soc. 124, 1207 (1977)CrossRefGoogle Scholar
  28. 28.
    H. Ogawa, Proceedings of Second International Meeting on Lithium Batteries, Elsevier Sequoia, Lausanne, Switzerland (1984), p. 259Google Scholar
  29. 29.
    J. Wang, P. King and R.A. Huggins, Solid State Ionics 20, 185 (1986)CrossRefGoogle Scholar
  30. 30.
    J. Wang, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 133, 457 (1986)CrossRefGoogle Scholar
  31. 31.
    B.A. Boukamp, G.C. Lesh and R.A. Huggins, J. Electrochem. Soc. 128, 725 (1981)CrossRefGoogle Scholar
  32. 32.
    B.A. Boukamp, G.C. Lesh and R.A. Huggins, in Proc. Symp. on Lithium Batteries, ed. by H.V. Venkatasetty, Electrochem. Soc., Pennington, NJ (1981), p. 467Google Scholar
  33. 33.
    R.A. Huggins and B.A. Boukamp, US Patent 4,436,796Google Scholar
  34. 34.
    A. Anani, S. Crouch-Baker and R.A. Huggins, in Proc. Symp. on Lithium Batteries, ed. by A.N. Dey, Electrochem. Soc., Pennington, NJ (1987), p. 382Google Scholar
  35. 35.
    A. Anani, S. Crouch-Baker and R.A. Huggins, J. Electrochem. Soc. 135, 2103 (1988)CrossRefGoogle Scholar
  36. 36.
    C.J. Wen and R.A. Huggins, J. Solid State Chem. 35, 376 (1980)CrossRefGoogle Scholar
  37. 37.
    C.J. Wen and R.A. Huggins, J. Electrochem. Soc. 128, 1181 (1981)CrossRefGoogle Scholar
  38. 38.
    J. Yang, M. Winter and J.O. Besenhard, Solid State Ionics 90, 281 (1996)CrossRefGoogle Scholar
  39. 39.
    R.A. Huggins and W.D. Nix, Ionics 6, 57 (2000)CrossRefGoogle Scholar
  40. 40.
    A. Timmons, PhD Dissertation, Dalhousie University, Canada (2007)Google Scholar
  41. 41.
    M. Fujimoto, S. Fujitani, M. Shima, et al., US Patent 7,195,842 (March 27, 2007)Google Scholar
  42. 42.
    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X. Feng Zhang, R.A. Huggins and Y. Cui, Nat. Nanotechnol.3, 31 (2008)CrossRefGoogle Scholar
  43. 43.
    Y. Piffard, F. Leroux, D. Guyomard, J.-L. Mansot and M. Tournoux, J. Power Sources 68, 698 (1997)CrossRefGoogle Scholar
  44. 44.
    M. Nishijima, T. Kagohashi, N. Imanishi, Y. Takeda, O. Yamamoto and S. Kondo, Solid State Ionics 83, 107 (1996)CrossRefGoogle Scholar
  45. 45.
    T. Shodai, S. Okada, S-i. Tobishima, and J-i. Yamaki, Solid State Ionics 86–88, 785 (1996)Google Scholar
  46. 46.
    M. Nishijima, T. Kagohashi, Y. Takeda, N. Imanishi and O. Yamamoto, in Eighth International Meeting on Lithium Batteries, Nagoya, Japan (1996), p. 402Google Scholar
  47. 47.
    T. Shodai, S. Okada, S. Tobishima and J. Yamaki, in Eighth International Meeting on Lithium Batteries, Nagoya, Japan (1996), p. 404Google Scholar
  48. 48.
    P. Limthongkul, PhD Thesis, Massachussets Institute of Technology, Cambridge, MA (2002)Google Scholar
  49. 49.
    B. Klausnitzer, PhD Thesis, University of Ulm, Germany (2000)Google Scholar
  50. 50.
    A. Netz, PhD Thesis, University of Kiel, Germany (2001)Google Scholar
  51. 51.
    A. Netz, R.A. Huggins and W. Weppner, Presented at 11th International Meeting on Lithium Batteries, Monterey, CA (2002). Abstract No. 47Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations