Electrolyte Stability Windows and Their Extension

While the potential utility of electrolytes surely depends primarily upon the magnitude and selectivity of the ionic conductivity, the practical utilization of such materials also requires that they meet the relevant stability requirements. As mentioned earlier, this means that they must be stable with respect to thermal decomposition, and reactions with other species in their environments. In addition, they must be utilized under conditions in which ionic, rather than electronic, species conduct most of the charge. Stated another way, such materials must be utilized within their appropriate stability ranges.

Thus, the practical utilization of materials as electrolytes is often limited to restricted ranges of temperature, pressure, and chemical potentials. This matter has received relatively little attention to date, despite its obvious practical importance.


Solid Electrolyte Negative Electrode Propylene Carbonate Solid Electrolyte Interphase Standard Gibbs Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A. Huggins, “Evaluation of Properties Related to the Application of Fast Ionic Transport in Solid Electrolytes and Mixed Conductors,” in Fast Ion Transport in Solids, ed. by P. Vashishta,J.N. Mundy and G.K. Shenoy, North-Holland, New York (1979), p. 53Google Scholar
  2. 2.
    B.A. Boukamp and R.A. Huggins, Phys. Lett. A58, 231 (1976)Google Scholar
  3. 3.
    U.V. Alpen, A. Rabenau and G.H. Talat, Appl. Phys. Lett. 30, 621 (1977)CrossRefGoogle Scholar
  4. 4.
    B.A. Boukamp and R.A. Huggins, Mater. Res. Bull. 13, 23 (1978)CrossRefGoogle Scholar
  5. 5.
    E.D. Wachsman, P. Jayaweera, N. Jiang, D.M. Lowe and B.G. Pound, J. Electrochem. Soc.144, 233 (1997)CrossRefGoogle Scholar
  6. 6.
    E.D. Wachsman, Solid State Ionics 152–153, 657 (2002)Google Scholar
  7. 7.
    S. Visco, Presentation at Meeting of the Materials Research Society, San Francisco, CA (2006)Google Scholar
  8. 8.
    A.N. Dey, Presentation at the Fall Meeting of the Electrochemical Society (1970), Abstract 62Google Scholar
  9. 9.
    E. Peled, J. Electrochem. Soc. 126, 2047 (1979)CrossRefGoogle Scholar
  10. 10.
    J.O. Besenhard and H.P. Fritz, J. Electroanal. Chem. 53, 329 (1974)CrossRefGoogle Scholar
  11. 11.
    R. Fong, U. von Sacken and J.R. Dahn, J. Electrochem. Soc. 137, 2009 (1990)CrossRefGoogle Scholar
  12. 12.
    J.R. Dahn, A.K. Sleigh, H. Shi, B.M. Way, W.J. Weydanz, J.N. Reimers, Q. Zhong and U. von Sacken, “Carbons and Graphites as Substitutes for the Lithium Anode,”in Lithium Batteries,ed. by G. Pistoia, Elsevier, Amsterdam (1994), p. 1Google Scholar
  13. 13.
    M. Winter and J.O. Besenhard, “ Lithiated Carbons,” in Handbook of Battery Materials, ed. by J.O. Besenhard, Wiley-VCH, Weinheim (1999), p. 383Google Scholar
  14. 14.
    E. Peled, D. Golodnitsky and J. Pencier, “ The Anode/Electrolyte Iinterface,” in Handbook of Battery Materials, ed. by J.O. Besenhard, Wiley-VCH, Weinheim (1999), p. 419Google Scholar
  15. 15.
    M. Winter, K.-C. Moeller and J.O. Besenhard, “ Carbonaceous and Graphitic Anodes,” in Lithium Batteries, ed. by G.-A. Nazri and G. Pistoia, Kluwer, Boston, MA (2004), p. 144Google Scholar
  16. 16.
    M. Nazri, B. Yebka and G.-A. Nazri, “ Graphite-Electrolyte Interface in Lithium-Ion Batteries,” in Lithium Batteries, ed. by G.-A. Nazri and G. Pistoia, Kluwer (2004), p. 195Google Scholar
  17. 17.
    K. Xu, Chem. Rev. 104, 4303 (2004)CrossRefGoogle Scholar
  18. 18.
    A.N. Dey, Thin Solid Films 43, 131 (1977)CrossRefGoogle Scholar
  19. 19.
    D. Aurbach, M.L. Daroux, P.W. Faguy and E. Yeager, J. Electrochem. Soc. 134, 1611 (1987)CrossRefGoogle Scholar
  20. 20.
    D. Aurbach, A. Zaban, A. Schecheter, Y. Ein-Eli, E. Zinigrad and B. Markovsky, J. Elec-trochem. Soc. 142, 2873 (1995)CrossRefGoogle Scholar
  21. 21.
    Z.X. Shu, R.S McMillan and J.J. Murray, J. Electrochem. Soc. 140, 922 (1993)CrossRefGoogle Scholar
  22. 22.
    G.H. Wrodnigg, J.O. Besenhard and M. Winter, J. Electrochem. Soc. 146, 470 (1999)CrossRefGoogle Scholar
  23. 23.
    B. Simon and J.-P. Boeuve, U.S. Patent 5,626,981 (1997)Google Scholar
  24. 24.
    J. Barker and F. Gao, U.S. Patent 5,712,059 (1998)Google Scholar
  25. 25.
    D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt and U. Heider, Electrochim.Acta 47, 1423 (2002)CrossRefGoogle Scholar
  26. 26.
    C. Wang, H. Nakamura, H. Komatsu, M. Yoshio and H. Yoshitake, J. Power Sources 74, 142 (1998)CrossRefGoogle Scholar
  27. 27.
    I.D. Raistrick, J. Poris and R.A. Huggins, “Use of Alkali Nitrate Molten Salts as Electrolytes in Intermediate Temperature Lithium Batteries,” in Proceedings of the 16th Intersociety Energy Conversion Engineering Conference, Atlanta, GA, American Society of Mechanical Engineers New York (1981), p. 774Google Scholar
  28. 28.
    I.D. Raistrick, J. Poris and R.A. Huggins, “ Nitrate Molten Salt Electrolytes for Use in Intermediate Temperature Lithium Cells,” in Proceedings of the Symposium on Lithium Batteries,ed. by H.V. Venkatasetty, Electrochemical Society, Pennington, NJ (1981), p. 477Google Scholar
  29. 29.
    J. Poris, I.D. Raistrick and R.A. Huggins, “ Behavior of Lithium and Positive Electrode Materials in Molten Nitrate Electrolytes,” in Proceedings of the Symposium on Lithium Batteries,ed. by H.V. Venkatasetty, Electrochemical Society, Pennington, NJ (1981), p. 459Google Scholar
  30. 30.
    R.M. Biefeld and R.T. Johnson, Jr., J. Electrochem. Soc. 126, 1 (1979)+CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations