Advertisement

Solid Electrolytes

The surprising discovery of electronically insulating solids in which there can be very rapid long-range motion of charged ionic species, such that they can act as solid electrolytes, really marked the beginning of the era of modern batteries. The subsequent development of solids with insertion reactions has received more attention in recent years, however, as discussed elsewhere in this text.

Nevertheless, it is important to give some attention to the topic of solid electrolytes, and the structural and mechanistic features that make them different from most other, more common, materials.

Keywords

Solid Electrolyte Activation Enthalpy Minimum Energy Path Mobile Cation Fast Ionic Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Nernst, Z. Elektrochem. 6, 41 (1900)Google Scholar
  2. 2.
    C. Wagner, Naturwissenschaften 31, 265 (1943)CrossRefGoogle Scholar
  3. 3.
    C. Wagner, J. Chem. Phys. 21, 1819 (1953)CrossRefGoogle Scholar
  4. 4.
    C. Wagner, Proc. Int. Committee Electrochem. Thermo. Kinet. (CITCE) 7, 361 (1957)Google Scholar
  5. 5.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 308 (1957)CrossRefGoogle Scholar
  6. 6.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 379 (1957)CrossRefGoogle Scholar
  7. 7.
    J.N. Bradley and P.D. Greene, Trans. Faraday Soc. 62, 2069 (1966)CrossRefGoogle Scholar
  8. 8.
    J.N. Bradley and P.D. Greene, Trans. Faraday Soc. 63, 424 (1967)CrossRefGoogle Scholar
  9. 9.
    J.N. Bradley and P.D. Greene, Trans. Faraday Soc. 63, 2516 (1967)CrossRefGoogle Scholar
  10. 10.
    B.B. Owens and G.R. Argue, Science 157, 308 (1967)CrossRefGoogle Scholar
  11. 11.
    B.B. Owens and G.R. Argue, J. Electrochem. Soc. 117, 898 (1970)CrossRefGoogle Scholar
  12. 12.
    Y.F.Y. Yao and J.T. Kummer, J. Inorg. Nucl. Chem. 29, 2453 (1967)CrossRefGoogle Scholar
  13. 13.
    R.H. Radzilowski, Y.F. Yao and J.T. Kummer, J. Appl. Phys. 40, 4716 (1969)CrossRefGoogle Scholar
  14. 14.
    N. Weber and J.T. Kummer, Proc. Ann. Power Sources Conf. 21, 37 (1967)Google Scholar
  15. 15.
    F.A.Kröger and H.J. Vink, Solid State Phys. 3, 307 (1956)CrossRefGoogle Scholar
  16. 16.
    M.L. Huggins, J. Phys. Chem. 58, 1141 (1954)CrossRefGoogle Scholar
  17. 17.
    M.L. Huggins, J. Am. Ceramic Soc. 38, 172 (1955)CrossRefGoogle Scholar
  18. 18.
    M.L. Huggins, Bull. Chem. Soc. Jpn. 28, 606 (1955)CrossRefGoogle Scholar
  19. 19.
    M.L. Huggins, J. Am. Chem. Soc. 77, 3928 (1955)CrossRefGoogle Scholar
  20. 20.
    R.A. Huggins and M.L. Huggins, “Structural Defect Equilibria in Vitreous Silica and Dilute Silicates”, J. Solid State Chem. 2, 385 (1970)CrossRefGoogle Scholar
  21. 21.
    R.A. Huggins, Structural Defect Equilibria in Vitreous Oxides Based upon the StructonModel, inReactivity of Solids, ed. by J.S. Anderson, M.W. Roberts and F.S. Stone, Chapman and Hall, London (1972), p. 186Google Scholar
  22. 22.
    D.O. Raleigh, Prog. Solid State Chem. 3, 83 (1967)CrossRefGoogle Scholar
  23. 23.
    W. Van Gool, ed.Fast Ionic Conduction in Solids, North-Holland, Amsterdam (1973)Google Scholar
  24. 24.
    W. Van GoolAnn. Rev. Mater. Sci. 4, 311 (1974)CrossRefGoogle Scholar
  25. 25.
    R.A. Huggins, “Very Rapid Transport in Solids,” inDiffusion in Solids: Recent Developments, ed. by A.S. Nowick and J.J. Burton, Academic Press, New York (1975), p. 445Google Scholar
  26. 26.
    R.A. HugginsAdv. Electrochem. Electrochem. Eng. 10, 323 (1977)Google Scholar
  27. 27.
    R.A. Huggins, Electrochim. Acta 22, 773 (1977)CrossRefGoogle Scholar
  28. 28.
    P. Vashishta, J.N. Mundy and G.K. Shenoy, eds.Fast Ion Transport in Solids, Elsevier/North-Holland, Amsterdam (1979)Google Scholar
  29. 29.
    H. Rickert, inFast Ionic Conduction in Solids, ed. by W. Van Gool, North-Holland, Amsterdam (1973), p. 3Google Scholar
  30. 30.
    W.F. Chu, H. Rickert and W. Weppner, inFast Ionic Conduction in Solids, ed. by W. Van Gool, North-Holland, Amsterdam (1973), p. 181Google Scholar
  31. 31.
    C. Tubandt and E. Lorenz, Z. Phys. Chem. 87, 513 (1914)Google Scholar
  32. 32.
    A. Kvist, inPhysics of Electrolytes, Vol. 1, ed. by J. Hladik, Academic Press, New York (1972), p. 319Google Scholar
  33. 33.
    L.W. Strock, Z. Phys. Chem. B 25, 441 (1934)Google Scholar
  34. 34.
    L.W. Strock, Z. Phys. Chem. B 31, 132 (1936)Google Scholar
  35. 35.
    M. O'Keefe, Science 180, 1276 (1973)CrossRefGoogle Scholar
  36. 36.
    M.J. Buerger and B.J. Wuensch, Science 141, 276 (1963)CrossRefGoogle Scholar
  37. 37.
    K. Funke, Prog. Solid State Chem. 11, 345 (1976)CrossRefGoogle Scholar
  38. 38.
    J. Volkl and G. Alefield, inDiffusion in Solids: Recent Developments, ed. by A.S. Nowick and J.J. Burton, Academic Press, New York (1975), p. 231Google Scholar
  39. 39.
    W.F. Flygare and R.A. Huggins, J. Phys. Chem. Solids 34, 1199 (1973)CrossRefGoogle Scholar
  40. 40.
    O.B. Ajayi, Ph.D. Dissertation, Stanford University, Palo Alto, CA (1975)Google Scholar
  41. 41.
    O.B. Ajayi, L.E. Nagel, I.D. Raistrick and R.A. Huggins, J. Phys. Chem. Solids 37, 167 (1976)CrossRefGoogle Scholar
  42. 42.
    M. Born and J.E. Mayer, Z. Phys. 75, 1 (1932)CrossRefGoogle Scholar
  43. 43.
    J.P. Hardy and J.W. Flocken, CRC Crit. Rev. Solid State Sci. 1, 606 (1970)CrossRefGoogle Scholar
  44. 44.
    O.W. Johnson, Phys. Rev. 136, A284 (1964)CrossRefGoogle Scholar
  45. 45.
    B. E. Liebert, PhD Dissertation, Stanford University, Palo Alto, CA (1977)Google Scholar
  46. 46.
    O.W. Johnson, S.-H. Paek and J.W. DeFord, J. Appl. Phys. 46, 1026 (1975)CrossRefGoogle Scholar
  47. 47.
    L. Pauling, Z. Kristallogr. 67, 377 (1928)Google Scholar
  48. 48.
    I.D. Raistrick, C. Ho and R.A. Huggins, Mater. Res. Bull. 11, 953 (1976)CrossRefGoogle Scholar
  49. 49.
    W. Weppner and R.A. Huggins, J. Electrochem. Soc. 124, 1569 (1977)CrossRefGoogle Scholar
  50. 50.
    W. Weppner and R.A. Huggins, J. Solid State Chem. 22, 297 (1977)CrossRefGoogle Scholar
  51. 51.
    B.T.M. Willis, Proc. Brit. Ceram. Soc. 1, 9 (1964)Google Scholar
  52. 52.
    A.K. Cheetham, B.E.F. Fender, and M.J. Cooper, J. Phys. C 4, 3107 (1971)Google Scholar
  53. 53.
    J.T. Kummer, Prog. Solid State Chem. 7, 141 (1972)CrossRefGoogle Scholar
  54. 54.
    M.S. Whittingham and R.A. Huggins, inSolid State Chemistry, ed. by R.A. Roth and S.J. Schneider, Nat. Bur. Std. Spec. Publ 364, Washington, DC (1972), p. 139Google Scholar
  55. 55.
    E. Zintl and G. Brauer, Z. Elektrochem. 41, 102 (1935)Google Scholar
  56. 56.
    A. Rabenau and H. Schulz, J. Less Common Metals 50, 155 (1976)CrossRefGoogle Scholar
  57. 57.
    B.A. Boukamp and R.A. Huggins, Phys. Lett. A 58, 231 (1976)Google Scholar
  58. 58.
    U. von Alpen, A. Rabenau and G.H. Talat, Appl. Phys. Lett. 30, 621 (1977)CrossRefGoogle Scholar
  59. 59.
    M.S. Frant and J.W. Ross, Science 154, 1553 (1966)CrossRefGoogle Scholar
  60. 60.
    A. Sher, R. Solomon, K. Lee, and M.W. Muller, Phys. Rev. 144, 593 (1966)CrossRefGoogle Scholar
  61. 61.
    T. Takahashi, H. Iwahara and T. Ishikawa, J. Electrochem. Soc. 124, 280 (1977)CrossRefGoogle Scholar
  62. 62.
    K. Lee, Solid State Commun. 7, 363 (1969)CrossRefGoogle Scholar
  63. 63.
    S. Geller, Science 157, 310 (1967)CrossRefGoogle Scholar
  64. 64.
    H.Y.-P. Hong, J.A. Kafalas and J.B. Goodenough, J. Solid State Chem. 9, 345 (1974)CrossRefGoogle Scholar
  65. 65.
    H.Y.-P. Hong, Mater. Res. Bull. 11, 173 (1976)CrossRefGoogle Scholar
  66. 66.
    J.B. Goodenough, H.Y.-P. Hong and J.A. Kafalas, Mater. Res. Bull. 11, 203 (1976)CrossRefGoogle Scholar
  67. 67.
    R.D. Shannon, B.E. Taylor, A.D. English and T. Berzins, Electrochim. Acta 22, 783 (1977)CrossRefGoogle Scholar
  68. 68.
    B.E. Taylor, A.D. English and T. Berzins, Mater. Res. Bull. 12, 171 (1977)CrossRefGoogle Scholar
  69. 69.
    H. Völlenkle, A. Wittman and H. Nowotny, Mh. Chem. 99, 1360 (1968)Google Scholar
  70. 70.
    Y.-W. Hu, I.D. Raistrick and R.A. Huggins, Mater. Res. Bull. 11, 1227 (1976)CrossRefGoogle Scholar
  71. 71.
    Y.-W. Hu, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 124, 1240 (1977)CrossRefGoogle Scholar
  72. 72.
    B.E. Liebert and R.A. Huggins, Mater. Res. Bull. 11, 533 (1976)CrossRefGoogle Scholar
  73. 73.
    W. Weppner and R.A. Huggins, Phys. Lett. A 58, 245 (1976)Google Scholar
  74. 74.
    W. Weppner and R.A. Huggins, J. Electrochem. Soc. 124, 35 (1977)CrossRefGoogle Scholar
  75. 75.
    J. Gendell, R.M. Cotts and M.J. Sienko, J. Chem. Phys. 37, 220 (1962)CrossRefGoogle Scholar
  76. 76.
    T.K. Halstead, W.U. Benesh, R.D. Gulliver II and R.A. Huggins, J. Chem. Phys. 58, 3530 (1973)CrossRefGoogle Scholar
  77. 77.
    A.G. Belous, G.N. Novitsukaya, S.V. Polyanetkaya and Y.I Gornikov, Izv. Akad. Nauk SSSR Neorg. Mater. 23, 470 (1987)Google Scholar
  78. 78.
    Y. Inagumi, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta and W. Wakihara, Solid State Commun. 86, 689 (1993)CrossRefGoogle Scholar
  79. 79.
    H. Kawai and J. Kuwano, J. Electrochem. Soc. 141, L78 (1994)CrossRefGoogle Scholar
  80. 80.
    P. Birke, S. Scharner, R.A. Huggins and W. Weppner, J. Electrochem. Soc. 144, L167 (1997)CrossRefGoogle Scholar
  81. 81.
    V. Thangadurai, H. Kaack and W. Weppner, J. Am. Ceram. Soc. 86, 437 (2003)CrossRefGoogle Scholar
  82. 82.
    V. Thangadurai and W. Weppner, J. Am. Ceram. Soc. 88, 411 (2005)CrossRefGoogle Scholar
  83. 83.
    V. Thangadurai and W. Weppner, J. Power sources 142, 339 (2005)CrossRefGoogle Scholar
  84. 84.
    R. Murugan, V. Thangadurai and W. Weppner, J. Electrochem. Soc. 155, A90 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations