Advertisement

Liquid Electrolytes

Most current battery systems have solid electrodes, separated by liquid electrolytes. Aside from considerations such as the magnitude of the ionic conductivity of liquids typically being considerably greater than those of solids, one of the major advantages of this arrangement is that the presence of the liquid reduces problems resulting from the volume changes that typically result from the changes in the composition of the electrode materials as they are charged and discharged.

A major consideration in connection with electrolytes has to do with the range of potentials over which they are stable. An obvious example of this is the fact that aqueous electrolytes cannot be used with negative electrodes that have high lithium activities. Organic solvent electrolytes must be used instead.

Keywords

Ionic Liquid Molten Salt Liquid Electrolyte Aqueous Electrolyte Negative Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Deublein and R.A. Huggins, Solid State Ionics 18/19, 1110 (1986)CrossRefGoogle Scholar
  2. 2.
    R.J. Heus and J.J. Egan, J. Phys. Chem. 77, 1989 (1973)CrossRefGoogle Scholar
  3. 3.
    R.N. Seefurth and R.A. Sharma, J. Electrochem. Soc. 122, 1049 (1975)CrossRefGoogle Scholar
  4. 4.
    G. Deublein and R.A. Huggins, unpublished results (1986)Google Scholar
  5. 5.
    W. Weppner and R.A. Huggins, J. Electrochem. Soc. 124, 35 (1977)CrossRefGoogle Scholar
  6. 6.
    W. Weppner and R.A. Huggins, Thermodynamic Stability of the Solid and Molten electrolyte LiAlCl4, in Fast Ion Transport in Solids, ed. by P. Vashishta, J.N. Mundy and G.K. Shenoy, North-Holland, New York (1979), p. 475Google Scholar
  7. 7.
    I.D. Raistrick and R.A. Huggins, Use of Lithium Aluminum Chloride Molten Salt as an Electrolyte in Lithium Cells, in Proceedings of the Fourth International Symposium on Molten Salts, ed. by M. Blander, D.S. Newman, G. Mamantov, M.L. Saboungi and K. Johnson, Electrochemical Society, Pennington, NJ (1984), p. 82Google Scholar
  8. 8.
    G. Deublein, Personal communication (2007)Google Scholar
  9. 9.
    N.A. Godshall, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 131, 543 (1984)CrossRefGoogle Scholar
  10. 10.
    E. Peled, J. Electrochem. Soc. 126, 2047 (1979)CrossRefGoogle Scholar
  11. 11.
    R. Fong, U. von Sacken and J.R. Dahn, J. Electrochem. Soc. 137, 2009 (1990)CrossRefGoogle Scholar
  12. 12.
    J.O. Besenhard and H.P. Fritz, J. Electroanal. Chem. 53, 329 (1974)CrossRefGoogle Scholar
  13. 13.
    J.-M. Tarascon and D. Guyomard, J. Electrochem. Soc. 140, 3071 (1993)CrossRefGoogle Scholar
  14. 14.
    J.-M. Tarascon and D. Guyomard, Solid State Ionics 69, 293 (1994)CrossRefGoogle Scholar
  15. 15.
    K. Xu, Chem. Rev. 104, 4303 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Barthel and H.J. Gores, in Handbook of Battery Materials, ed. by J.O. Besenhard, Wiley-VCH, New York (1999), p. 457Google Scholar
  17. 17.
    K. Xu, S. Zhang, T.R. Jow, W. Xu and C.A. Angell, Electrochem. Solid State Lett. 5, A26 (2002)CrossRefGoogle Scholar
  18. 18.
    J. Jiang, H. Fortier, J.N. Reimers and J.R. Dahn, J. Electrochem. Soc. 151, A609 (2004)CrossRefGoogle Scholar
  19. 19.
    J.H. Shin and E.J. Cairns, Rechargeable Li Metal Cells Using N-Methyl-N-butyl pyrrolidinium Bis(trifluoromethane sulfonyl)imide Electrolyte Incorporating Polymer Additives, Presented at Focussed Battery Technology Workshop III, Pasadena (2008)Google Scholar
  20. 20.
    N. Agmon, Chem. Phys. Lett. 244, 456 (1995)CrossRefGoogle Scholar
  21. 21.
    W.G. Grot, US Patent 3,770,567 (1971)Google Scholar
  22. 22.
    K.-D. Kreuer, Chem. Mater. 8, 610 (1996)CrossRefGoogle Scholar
  23. 23.
    K.A. Mauritz and R.B. Moore, Chem. Rev. 104, 4535 (2004)CrossRefGoogle Scholar
  24. 24.
    K.-D. Kreuer, S.J. Paddison, E. Spohr and M. Schuster, Chem. Rev. 104, 4637 (2004)CrossRefGoogle Scholar
  25. 25.
    J.S. Wainright, J.T. Wang, D. Weng, R.F. Savinel and M. Litt, J. Electrochem. Soc. 142, L121 (1995)CrossRefGoogle Scholar
  26. 26.
    L. Pauling, The Nature of the Chemical Bond, Cornell Univ. Press, Ithaca, NY (1939), p. 60Google Scholar
  27. 27.
    G. Deublein, B.Y. Liaw and R.A. Huggins, Solid State Ionics 28–30, 1078 (1988)CrossRefGoogle Scholar
  28. 28.
    G. Deublein and R.A. Huggins, unpublished resultsGoogle Scholar
  29. 29.
    R.A. Huggins, J. Power Sources 22, 341 (1988)CrossRefGoogle Scholar
  30. 30.
    R.A. Huggins, in Fast Ion Transport in Solids, ed. by B. Scrosati, et al., Kluwer, Amsterdam (1993), p. 143Google Scholar
  31. 31.
    R.A. Huggins, in Handbook of Battery Materials, ed. by J.O. Besenhard, Wiley-VCH, New York (1999), p. 359.Google Scholar
  32. 32.
    R.A. Huggins, J. Power Sources, 81–82, 13 (1999)CrossRefGoogle Scholar
  33. 33.
    C.J. Wen and R.A. Huggins, J. Solid State Chem. 37, 271 (1981)CrossRefGoogle Scholar
  34. 34.
    G. Deublein and R.A. Huggins, J. Electrochem. Soc. 136, 2234 (1989)CrossRefGoogle Scholar
  35. 35.
    G. Deublein, B.Y. Liaw and R.A. Huggins, Solid State Ionics 28–30, 1660 (1988)CrossRefGoogle Scholar
  36. 36.
    B.Y. Liaw, G. Deublein and R.A. Huggins, J. Alloys Compounds 189, 175 (1992)CrossRefGoogle Scholar
  37. 37.
    G. Deublein and R.A. Huggins, Solid State Ionics 18/19, 1110 (1986)CrossRefGoogle Scholar
  38. 38.
    C.M. Luedecke, G. Deublein and R.A. Huggins, in Hydrogen Energy Progress V, ed. by T.N. Veziroglu and J.B. Taylor, Pergamon Press, New York (1984), p. 1421Google Scholar
  39. 39.
    C.M. Luedecke, G. Deublein and R.A. Huggins, J. Electrochem. Soc. 132, 52 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations