Advertisement

Potentials and potential gradients are important in battery systems. The difference in the potentials of the two electrodes determines the voltage of electrochemical cells, being larger when they are charged, and smaller when they are discharged. On the other hand, potential gradients are the driving forces for the transport of species within electrodes.

All potentials (potential energies) are relative, rather than having absolute values. Since they cannot be measured on an absolute scale it is desirable to establish useful references against which they can be measured. This is not the case in electrochemistry alone, but is true for all disciplines. For example, when dealing with the potential energies of electrons in solids the solid-state physics community uses two different references, depending upon the problem being addressed. One is the potential energy of an electron at the bottom of the valence band in a solid, and the other is the so-called vacuum level, the energy of an isolated electron at an infinite distance from the solid in question. There is no universal relation between these two reference potentials, as the first is dependent upon the identity of the material involved, while the latter is not. This matter is discussed in Sect. 13.1.

Keywords

Solid Electrolyte Neutral Species Transference Number Electrochemical Potential Reversible Hydrogen Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Wen, B.A. Boukamp, W. Weppner and R.A. Huggins, J. Electrochem. Soc. 126, 2258 (1979)CrossRefGoogle Scholar
  2. 2.
    I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim, Germany (1989)Google Scholar
  3. 3.
    W. Li, J.R. Dahn and D.S. Wainwright, Science 264, 1115 (1994)CrossRefGoogle Scholar
  4. 4.
    W. Li, W.R. McKinnon and J.R. Dahn, J. Electrochem. Soc. 141, 2310 (1994)CrossRefGoogle Scholar
  5. 5.
    W. Li and J.R. Dahn, J. Electrochem. Soc. 142, 1742 (1995)CrossRefGoogle Scholar
  6. 6.
    M. Zhang and J.R. Dahn, J. Electrochem. Soc. 143, 2730 (1996)CrossRefGoogle Scholar
  7. 7.
    J.N. Butler, Adv. Electrochem. Electrochem. Eng. 7, 77 (1970)Google Scholar
  8. 8.
    D.J.G. Ives and G.J. Janz, Reference Electrodes, Academic Press, New York (1961)Google Scholar
  9. 9.
    M. Pourbaix, Atlas of Electrochemical Equilibria, Pergamon Press, Oxford (1966)Google Scholar
  10. 10.
    J.W. Gibbs, Trans. Conn. Acad. Sci. 108 (1875)Google Scholar
  11. 11.
    J.W. Gibbs, The Scientific Papers of J. W. Gibbs, Vol. 1, Dover, New York (1961)Google Scholar
  12. 12.
    W. Weppner and R.A. Huggins, J. Electrochem. Soc. 125, 7 (1978)CrossRefGoogle Scholar
  13. 13.
    N.A. Godshall, I.D. Raistrick and R.A. Huggins, Mater. Res. Bull. 15, 561 (1980)CrossRefGoogle Scholar
  14. 14.
    N.A. Godshall, I.D. Raistrick and R.A. Huggins, Proc. 16th IECEC, 769 (1981)Google Scholar
  15. 15.
    N.A. Godshall, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 131, 543 (1984)CrossRefGoogle Scholar
  16. 16.
    J. Koryta, J. Dvorak and V. Bohackova, Electrochemistry, Methuen, London (1966)Google Scholar
  17. 17.
    B.A. Boukamp, G.C. Lesh and R.A. Huggins, J. Electrochem. Soc. 128, 725 (1981)CrossRefGoogle Scholar
  18. 18.
    B.A. Boukamp, G.C. Lesh and R.A. Huggins, in Proc. Symp. on Lithium Batteries, ed. by H.V. Venkatasetty, Electrochem. Soc., Palo Alto, CA (1981), p. 467Google Scholar
  19. 19.
    A. Anani, S. Crouch-Baker and R.A. Huggins, in Proc. of Symp. on Lithium Batteries, ed. by A.N. Dey, Electrochem. Soc., Palo Alto, CA (1987), p. 382Google Scholar
  20. 20.
    A. Anani, S. Crouch-Baker and R.A. Huggins, J. Electrochem. Soc. 135, 2103 (1988)CrossRefGoogle Scholar
  21. 21.
    I.D. Raistrick, A.J. Mark and R.A. Huggins, Solid State Ionics 5, 351 (1981)CrossRefGoogle Scholar
  22. 22.
    L.B. Ebert, Intercalation Compounds of Graphite, in Annual Review of Materials Science, ed. by R.A. Huggins, Annual Reviews, Palo Alto, CA (1976), p. 181Google Scholar
  23. 23.
    M. Armand, New Electrode Material, in Fast Ion Transport in Solids, ed. by W. van Gool, North-Holland, Amsterdam (1973), p. 665Google Scholar
  24. 24.
    M.B. Dines, Mater. Res. Bull. 10, 287 (1975)CrossRefGoogle Scholar
  25. 25.
    M.S. Whittingham and M.B. Dines, J. Electrochem. Soc. 124, 1387 (1977)CrossRefGoogle Scholar
  26. 26.
    D.W. Murphy, C. Cros, F.J. DiSalvo and J.V. Waszczak, Inorg. Chem. 16, 3027 (1977)CrossRefGoogle Scholar
  27. 27.
    D.W. Murphy, J.N. Carides, F.J. DiSalvo, C. Cros and J.V. Waszczak, Mater. Res. Bull. 12, 825 (1977)CrossRefGoogle Scholar
  28. 28.
    K. Vidyasagar and J. Gopalakrishnan, J. Solid State Chem. 42, 217 (1982)CrossRefGoogle Scholar
  29. 29.
    A. Mendiboure, C. Delmas and P. Hagenmuller, Mater. Res. Bull 19, 1383 (1984)CrossRefGoogle Scholar
  30. 30.
    G.M. Anderson, J. Iqbal, D.W.A. Sharp, J.M. Winfield, J.H. Cameron and A.G. McLeod, J. Fluorine Chem. 24, 303 (1984)CrossRefGoogle Scholar
  31. 31.
    A.R. Wizansky, P.E. Rauch and F.J. Disalvo, J. Solid State Chem. 81, 203 (1989)CrossRefGoogle Scholar
  32. 32.
    B.J. Wakefield, The Chemistry of Organolithium Compounds, Pergamon Press, Oxford (1974)Google Scholar
  33. 33.
    F.A. Kröger, H.J. Vink and J. van den Boomgard, Z. Phys. Chem. 203, 1 (1954)Google Scholar
  34. 34.
    G. Brouwer, Philips Res. Rep. 9, 366 (1954)Google Scholar
  35. 35.
    F.A. Kröger, The Chemistry of Imperfect Crystals, 2nd ed., North Holland, Amsterdam (1974)Google Scholar
  36. 36.
    H. Schmalzried, M. Ullrich and H. Wysk, Solid State Ionics 51, 91 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations