Skip to main content

Positive Electrodes in Aqueous Systems

  • Chapter
Advanced Batteries
  • 8239 Accesses

The following sections of this chapter will discuss three topics relating to positive electrodes in aqueous electrolyte battery systems, the manganese dioxide electrode, the “nickel” electrode, and the so-called memory effect that is found in batteries that have “nickel” positive electrodes.

The first of these deals with a very common material, MnO2, which is used in the familiar “alkaline” cells that are found in a very large number of small portable electronic devices. This electrode operates by a simple proton insertion reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Ruetschi, J. Electrochem. Soc. 131, 2737 (1984)

    CAS  Google Scholar 

  2. P. Ruetschi and R. Giovanoli, J. Electrochem. Soc. 135, 2663 (1988)

    Article  CAS  Google Scholar 

  3. J.J. Coleman, Trans. Electrochem. Soc. 90, 545 (1946)

    Google Scholar 

  4. I. Barin, Thermochemical Data of Pure Substances, VCH, New York (1995)

    Google Scholar 

  5. M. Pourbaix, Atlas of Electrochemical Equilibria, Pergamon Press, New York (1966)

    Google Scholar 

  6. S. Stotz and C. Wagner, Ber. Bunsenges. Phys. Chem. 70, 781 (1966)

    CAS  Google Scholar 

  7. A. Netz, W.F. Chu, V. Thangadurai, R.A. Huggins and W. Weppner, Ionics 5, 426 (1999)

    Article  CAS  Google Scholar 

  8. R.A. Huggins, J. Power Sources 153, 365 (2006)

    Article  CAS  Google Scholar 

  9. H. Bode, K. Dehmelt and J. Witte, Electrochim. Acta 11, 1079 (1966)

    Article  CAS  Google Scholar 

  10. P. Oliva, et al., J. Power Sources 8, 229 (1982)

    Article  CAS  Google Scholar 

  11. C. Faure, et al., J. Power Sources 35, 249 (1991)

    Article  CAS  Google Scholar 

  12. C. Faure, C. Delmas and P. Willmann, J. Power Sources 35, 263 (1991)

    Article  CAS  Google Scholar 

  13. C. Faure, C. Delmas and M. Fouassier, J. Power Sources 35, 279 (1991)

    Article  CAS  Google Scholar 

  14. C. Delmas, in Solid State Ionics II, G.-A. Nazri, D. F. Shriver, R. A. Huggins and M. Balkanski,Eds., Materials Research Society, Warrendale, PA (1991), p. 335

    Google Scholar 

  15. C. Delmas, et al., Solid State Ionics 28–30, 1132 (1988)

    Article  Google Scholar 

  16. G.W.D. Briggs, E. Jones and W.F.K. Wynne-Jones, Trans. Faraday Soc. 51, 394 (1955)

    Article  Google Scholar 

  17. F.P. Kober and J. Electrochem. Soc. 112, 1064 (1965)

    Article  CAS  Google Scholar 

  18. B.E. Conway and P.L. Bourgault, Can. J. Chem. 37, 292 (1959)

    Article  CAS  Google Scholar 

  19. E.M. Kuchinskii and B.V. Erschler, J. Phys. Chem. (USSR) 14, 985 (1940)

    Google Scholar 

  20. G.W.D. Briggs and M. Fleischmann, Trans. Faraday Soc. 67, 2397 (1971)

    Article  CAS  Google Scholar 

  21. R. Barnard, C.F. Randell and F.L. Tye, J. Appl. Electrochem. 10, 109 (1980)

    Article  CAS  Google Scholar 

  22. R.W. Crocker and R.H. Muller, Presented at the Meeting of the Electrochemical Society,Toronto (1992)

    Google Scholar 

  23. R.A. Huggins, in Fast Ion Transport in Solids, P.P. Vashishta, J.N. Mundy and G. K. Shenoy,Eds., North-Holland, Amsterdam (1979), p. 53

    Google Scholar 

  24. W. Weppner and R.A. Huggins, Solid State Ionics 1, 3 (1980)

    Article  CAS  Google Scholar 

  25. N.A. Godshall, I.D. Raistrick and R.A. Huggins, Mater. Res. Bull. 15, 561 (1980)

    Article  CAS  Google Scholar 

  26. N.A. Godshall, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 131, 543 (1984)

    Article  CAS  Google Scholar 

  27. J. Balej and J. Divisek, Presented at the Meeting of the Bunsengesellschaft, Wien (1992).

    Google Scholar 

  28. R.A. Huggins, M. Wohlfahrt-Mehrens and L. Jö rissen, Presented at Symposium on Intercalation Chemistry and Intercalation Electrodes, Meeting of the Electrochemical Society,Hawaii (1993)

    Google Scholar 

  29. P.C. Milner and U.B. Thomas, in Advances in Electrochemistry and Electrochemical Engineering, C.W. Tobias, Ed., Wiley-Interscience, New York (1967), p. 1

    Google Scholar 

  30. R. Barnard, G.T. Crickmore, J.A. Lee and F.L. Tye, J. Appl. Electrochem. 10, 61 (1980)

    Article  CAS  Google Scholar 

  31. B. Klapste, K. Mickja, J. Mrha and J. Vondrak, J. Power Sources 8, 351 (1982)

    CAS  Google Scholar 

  32. A.H. Zimmerman and P.K. Effa, J. Electrochem. Soc. 131, 709 (1984)

    Article  CAS  Google Scholar 

  33. H.S. Lim and S.A. Verzwyvelt, J. Power Sources 22, 213 (1988)

    Article  CAS  Google Scholar 

  34. H. Vaidyanathan, J. Power Sources 22, 221 (1988)

    Article  CAS  Google Scholar 

  35. J. McBreen, Mod. Aspects Electrochem. 21, 29 (1990)

    CAS  Google Scholar 

  36. A.H. Zimmerman, in Nickel Hydroxide Electrode, Vol. 90–94, D.A. Corrigan and A.H.Zimmerman, Eds., Electrochem. Soc. Proc., The Electrochemical Society, Pennington, NJ (1990), p. 311

    Google Scholar 

  37. A.H. Zimmerman, Proc. IECEC 4, 63 (1994)

    Google Scholar 

  38. P. Wilde, Ph.D. Thesis, University of Ulm, Germany (1996)

    Google Scholar 

  39. N. Sac-Epee, M.R. Palacín, B. Beaudoin, A. Delahaye-Vidal, T. Jamin, Y. Chabre and J.-M.Tarascon, J. Electrochem. Soc. 144, 3896 (1997)

    Article  CAS  Google Scholar 

  40. N. Sac-Epee, M.R. Palacìn, A. Delahaye-Vidal, Y. Chabre and J.-M. Tarâscon, J. Electrochem.Soc. 145, 1434 (1998)

    Article  CAS  Google Scholar 

  41. C. Leger, C. Tessier, M. Ménétrier, C. Denage and C. Delmas, J. Electrochem. Soc. 146,924 (1999)

    Article  CAS  Google Scholar 

  42. F. Fourgeot, S. Deabate, F. Henn and M. Costa, Ionics 6, 364 (2000)

    Article  CAS  Google Scholar 

  43. S. Deabate, F. Fourgeot and F. Henn, Ionics 6, 415 (2000)

    Article  CAS  Google Scholar 

  44. F. Barde, M.R. Palacin, Y. Chabre, O. Isnard and J.-M. Tarascon, Chem. Mater. 16,3936 (2004)

    Article  CAS  Google Scholar 

  45. R.A. Huggins, Solid State Ionics 177, 2643 (2006)

    Article  CAS  Google Scholar 

  46. R.A. Huggins, J. Power Sources 165, 640 (2007)

    Article  CAS  Google Scholar 

  47. R.A. Huggins, M. Wohlfahrt-Mehrens and L. Jö rissen, Presented at Meeting of the Electrochemical Society, Hawaii (1992)

    Google Scholar 

  48. R.A. Huggins, M. Wohlfahrt-Mehrens and L. Jörissen, in Solid State Ionics III, G.-A. Nazri,J.-M. Tarascon and M. Armand, Eds., Materials Research Society Proceedings 293,Pittsburgh, PA (1993), p. 57

    Google Scholar 

  49. R.A. Huggins, H. Prinz, M. Wohlfahrt-Mehrens, L. Jörissen and W. Witschel, Solid State Ionics 70/71, 417 (1994)

    Article  Google Scholar 

  50. C. Greaves, M.A. Thomas and M. Turner, Power Sources 9, 163 (1983)

    Google Scholar 

  51. C. Greaves, A.M. Malsbury and M.A. Thomas, Solid State Ionics 18/19, 763 (1986)

    Article  Google Scholar 

  52. A.M. Malsbury and C. Greaves, J. Solid State Chem. 71, 418 (1987)

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2009). Positive Electrodes in Aqueous Systems. In: Advanced Batteries. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76424-5_11

Download citation

Publish with us

Policies and ethics