Microstructural Imaging of Neurodegenerative Changes

  • Vladimir Kepe
  • Sung-Cheng Huang
  • Gary W. Small
  • Nagichettiar Satyamurthy
  • Jorge R. Barrio

Modern medical imaging techniques serve an important role in the diagnosis of neurodegenerative disorders. Assessment of structural changes, e.g., brain atrophy with magnetic resonance imaging (MRI) or computed tomography (CT), and functional changes, e.g., brain perfusion with single photon emission tomography (SPECT) or brain glucose utilization with positron emission tomography (PET), provide valuable information about the extent of cellular neurodegeneration processes in Alzheimer’s disease (AD), frontotemporal dementia, Parkinson’s disease, and other disorders. Neuronal loss, neuronal shrinkage, synaptic loss, and loss of neuronal projections contribute to the collapse of gray and white matter measurable as atrophy. At the same time, these neuronal changes compromise the integrity of the major neuronal circuits, which results in decreased function and decreased glucose utilization, which is measurable with 18 F-FDG PET


Positron Emission Tomography Mild Cognitive Impairment Entorhinal Cortex Medial Temporal Lobe Amnestic Mild Cognitive Impairment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. Linda Ercoli for directing neuropsychological testing and Dr. Prabha Siddarth for performing statistical analyses. Financial support from the Department of Energy (grant DE-FC03–02ER63420) is gratefully acknowledged.


  1. 1.
    1. Minoshima S. Imaging Alzheimer's disease: clinical applications. Neuroimaging Clin North Am 2003;13:769–780.CrossRefGoogle Scholar
  2. 2.
    2. Evans DA. Estimated prevalence of Alzheimer's disease in the United States. Milbank Q 1990;68:267–289.PubMedCrossRefGoogle Scholar
  3. 3.
    3. Salmon DP, Lange KL. Cognitive screening and neuropsychological assessment in early Alzheimer's disease. Clin Geriatr Med 2001;17:229–254.PubMedCrossRefGoogle Scholar
  4. 4.
    4. Von Strauss EM, Viitane D, De Ronchi D,. Aging and the occurrence of dementia. Arch Neurol 1999;56:587–592.PubMedCrossRefGoogle Scholar
  5. 5.
    5. Iqbal K. Alzheimer's Disease: Basic Mechanisms, Diagnosis, and Therapeutic Strategies. Chichester: Wiley, 1991.Google Scholar
  6. 6.
    6. Rice DP, Fillit HM, Max W,. Prevalence, costs, and treatment of Alzheimer's disease and related dementia: a managed care perspective. Am J Manag Care 2001;7:809–817.PubMedGoogle Scholar
  7. 7.
    7. Vickers JC, Dickson TC, Adlard PA,. The cause of neuronal degeneration in Alzheimer's disease. Prog Neurobiol 2000;60:139–165.PubMedCrossRefGoogle Scholar
  8. 8.
    8. Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allgem Zeitschr Psychiatrie 1907;64:146–148.Google Scholar
  9. 9.
    9. Lantos P, Cairns N. The neuropathology of Alzheimer's disease. In: O'Brien J, Ames D, Burns A. Dementia, 2nd ed. London: Arnold, 2000:443–459.Google Scholar
  10. 10.
    10. Teplow DB. Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 1998;5:121–142.PubMedCrossRefGoogle Scholar
  11. 11.
    11. Selkoe DJ. Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease. Annu Rev Cell Biol 1994;10:373–403.PubMedCrossRefGoogle Scholar
  12. 12.
    12. Dickson TC, Vickers JC. The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer's disease. Neuroscience 2001;105:99–107.PubMedCrossRefGoogle Scholar
  13. 13.
    13. Wisniewski T, Ghiso J, Frangione B. Biology of Aβ amyloid in Alzheimer's disease. Neurobiol Dis 1997;4:313–328.PubMedCrossRefGoogle Scholar
  14. 14.
    14. Lansbury PT. A reductionist view of Alzheimer's disease. Accounts Chem Res 1996;29:317–321.CrossRefGoogle Scholar
  15. 15.
    15. Kirschner DA, Abraham C, Selkoe DJ. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci USA 1986;83:503–507.PubMedCrossRefGoogle Scholar
  16. 16.
    16. Serpell LC. Alzheimer's amyloid fibrils: structure and assembly. Biochim Biophys Acta 2000;1502:16–30.PubMedGoogle Scholar
  17. 17.
    17. Malinchik SB, Inouye H, Szumowski KE,. Structural analysis of Alzheimer's β(1–40) amyloid: protofilament assembly of tubular fibrils. Biophys J 1998;74:537–545.PubMedCrossRefGoogle Scholar
  18. 18.
    18. Seilheimer B, Bohrmann B, Nondolfi B,. The toxicity of the Alzheimer's beta-amyloid peptide correlates with a distinct fiber morphology. J Struct Biol 1997;119:59–71.PubMedCrossRefGoogle Scholar
  19. 19.
    19. Miyakawa T, Katsuragi S, Watanabe K,. Ultrastructural studies of amyloid fibrils and senile plaques in human brain. Acta Neuropathol 1986;70:202–208.PubMedCrossRefGoogle Scholar
  20. 20.
    20. Kirschner DA, Inouye H, Duffy LK,. Synthetic peptide homologous to beta protein from Alzheimer disease forms amyloid-like fibrils in vitro . Proc Natl Acad Sci USA 1987;84:6953–6957.PubMedCrossRefGoogle Scholar
  21. 21.
    21. Atwood CS, Martins RN, Smith MA,. Senile plaque composition and posttranslational modification of amyloid-β peptide and associated proteins. Peptides 2002;23:1343–1350.PubMedCrossRefGoogle Scholar
  22. 22.
    22. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci 2001;24:1121–1159.PubMedCrossRefGoogle Scholar
  23. 23.
    23. Braak E, Griffing K, Arai K,. Neuropathology of Alzheimer's disease: what is new since A. Alzheimer? Eur Arch Psychiatry Clin Neurosci 1999;249(Suppl 3):14–22.CrossRefGoogle Scholar
  24. 24.
    24. Barghorn S, Davies P, Mandelkow E. Tau paired helical filaments from Alzheimer's disease brain and assembled in vitro are based on β-structure in the core domain. Biochemistry 2004;43:1694–1703.PubMedCrossRefGoogle Scholar
  25. 25.
    25. von Bergen M, Barghorn S, Biernat J,. Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta 2005;1739:158–166.PubMedGoogle Scholar
  26. 26.
    26. Mandelkow EM, Mandelkow E. Tau in Alzheimer's disease. Trends Cell Biol 1998;8:425–427.PubMedCrossRefGoogle Scholar
  27. 27.
    27. Yen S-H, Liu W-K, Hall FL,. Alzheimer neurofibrillary lesions: molecular nature and potential roles of different components. Neurobiol Aging 1995;16:381–387.PubMedCrossRefGoogle Scholar
  28. 28.
    28. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991;82:239–259.PubMedCrossRefGoogle Scholar
  29. 29.
    29. Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease. Ann Neurol 1999;45:358–368.PubMedCrossRefGoogle Scholar
  30. 30.
    30. Morisson JH, Hof PR. Life and death of neurons in the aging brain. Science 1997;278:412–419.CrossRefGoogle Scholar
  31. 31.
    31. Mann DMA. Pyramidal nerve cell loss in Alzheimer's disease. Neurodegeneration 1996;5:423–427.PubMedCrossRefGoogle Scholar
  32. 32.
    32. Hof PR. Morphology and neurochemical characteristics of the vulnerable neurons in brain aging and Alzheimer's disease. Eur Neurol 1997;37:71–81.PubMedCrossRefGoogle Scholar
  33. 33.
    33. Bobinski MJ, Wegiel M, Tarnawski M,. Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease. J Neuropathol Exp Neurol 1997;56:414–420.PubMedCrossRefGoogle Scholar
  34. 34.
    34. Gomez-Isla T, Hollister R, West H,. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol 1997;41:17–24.PubMedCrossRefGoogle Scholar
  35. 35.
    35. Gomez-Isla T, Price JL, McKeel DW,. Profound loss of layer II entorhinal cortex neurons distinguishes very mild Alzheimer's disease from nondemented aging. J Neurosci 1996;16:4491–4450.PubMedGoogle Scholar
  36. 36.
    36. Price JL, Ko AI, Wade MJ,. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer's disease. Arch Neurol 2001;58:1395–1402.PubMedCrossRefGoogle Scholar
  37. 37.
    37. Kordower JH, Chu Y, Stebbins GT,. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001;49:202–213.PubMedCrossRefGoogle Scholar
  38. 38.
    38. West MJ, Coleman PD, Flood DG,. Differences in the pattern of hippocampal neuronal loss in normal aging and Alzheimer's disease. Lancet 1994;344:769–772.PubMedCrossRefGoogle Scholar
  39. 39.
    39. Fukutani Y, Kobayashi K, Nakamura I,. Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal aging and Alzheimer's disease. Neurosci Lett 1995;200:57–60.PubMedCrossRefGoogle Scholar
  40. 40.
    40. Rössler M, Zarski R, Bohl J,. Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer's disease. Acta Neuropathol 2002;103:363–369.PubMedCrossRefGoogle Scholar
  41. 41.
    41. Giannakopoulos P, Herrmann FR, Bussiere T,. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology 2003;60:1495–1500.PubMedGoogle Scholar
  42. 42.
    42. Delacourte A, David JP, Sergeant N,. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. Neurology 1999;52:1158–1165.PubMedGoogle Scholar
  43. 43.
    43. Arnold SE, Hyman BT, Flory J,. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1991;1:103–116.PubMedCrossRefGoogle Scholar
  44. 44.
    44. Price JL, Davies PB, Morris JC,. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease. Neurobiol Aging 1991;12:295–312.PubMedCrossRefGoogle Scholar
  45. 45.
    45. Giannakopoulus P, Hof PR, Mottier S,. Neuropathological changes in the cerebral cortex of 1258 cases from a geriatric hospital: retrospective clinicopathological evaluation of a 10-year autopsy population. Acta Neuropathol 1994;87:456–468.CrossRefGoogle Scholar
  46. 46.
    46. McKhann G, Drachman D, Folstein M,. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939–44.PubMedGoogle Scholar
  47. 47.
    47. Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 1997;18:351–357.PubMedCrossRefGoogle Scholar
  48. 48.
    48. Knopman DS, Parisi JE, Salviati A,. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003;62:1087–1095.PubMedGoogle Scholar
  49. 49.
    49. Arriagada PV, Marzloff B, Hyman BT. Distribution of Alzheimer-type pathological changes in nondemented elderly individuals matches the pattern in Alzheimer's disease. Neurology 1992;42:1681–1688.PubMedGoogle Scholar
  50. 50.
    50. Guilloz et AL, Weintraub S, Mash DC,. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 2003;60:729–736.CrossRefGoogle Scholar
  51. 51.
    51. Petersen R, Smith G, Waring S,. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–308.PubMedCrossRefGoogle Scholar
  52. 52.
    52. Petersen RC, Parisi JE, Dickson DW,. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 2006;63:665–672.PubMedCrossRefGoogle Scholar
  53. 53.
    53. Jicha GA, Parisi JE, Dickson DW,. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol 2006;63:674–681.PubMedCrossRefGoogle Scholar
  54. 54.
    54. Price JL, Ko AI, Wade MJ,. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 2001;58:1395–1402.PubMedCrossRefGoogle Scholar
  55. 55.
    55. Silverman DH, Small GW, Chang CY,. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 2001;286:2120–2127.PubMedCrossRefGoogle Scholar
  56. 56.
    56. Silverman DH, Truong CT, Kim SK,. Prognostic value of regional cerebral metabolism in patients undergoing dementia evaluation: comparison to a quantifying parameter of subsequent cognitive performance and to prognostic assessment without PET. Mol Genet Metab 2003;80:350–355.PubMedCrossRefGoogle Scholar
  57. 57.
    57. Reiman EM, Caselli RJ, Yun LS,. Preclinical evidence of Alzheimer's disease in persons homozygous for the ε4 allele for apolipoprotein E. N Engl J Med 1996;334:752–758.PubMedCrossRefGoogle Scholar
  58. 58.
    58. Minoshima S, Frey KA, Cross DJ,. Neurochemical imaging of dementias. Semin Nucl Med 2004;34:70–82.PubMedCrossRefGoogle Scholar
  59. 59.
    59. Cohen RM. The application of positron-emitting molecular imaging tracers in Alzheimer's disease. Mol Imaging Biol 2007;9:204–216.PubMedCrossRefGoogle Scholar
  60. 60.
    60. Kepe V, Barrio JR, Huang S-C,. Serotonin 1A receptors in the living brain of Alzheimer's disease. Proc Natl Acad Sci USA 2006;103:702–707.PubMedCrossRefGoogle Scholar
  61. 61.
    61. Palmer AM, Middlemiss DN, Bowen DM. [3H]8-OH-DPAT binding in Alzheimer's disease: an index of pyramidal cell loss? In: Dourish CT, Ahlenius S, Hutson PH, Brain 5-HT1A Receptors. New York: Ellis Horwood , 1997:286–299.Google Scholar
  62. 62.
    62. Makin OS, Atkins E, Sikorsky P,. Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 2005;102:315–320.PubMedCrossRefGoogle Scholar
  63. 63.
    63. Shoghi-Jadid K, Barrio JR, Kepe V,. Imaging beta-amyloid fibrils in Alzheimer's disease: a critical analysis through simulation of amyloid fibril polymerization. Nucl Med Biol 2005;32:337–351.PubMedCrossRefGoogle Scholar
  64. 64.
    64. Shoghi-Jadid K, Barrio JR, Kepe V,. Exploring a mathematical model for the kinetics of beta-amyloid molecular imaging probes through a critical analysis of plaque pathology. Mol Imaging Biol 2006;8:151–162.PubMedCrossRefGoogle Scholar
  65. 65.
    65. Kurihara A, Pardridge WM. Abeta(1–40) peptide radiopharmaceuticals for brain amyloid imaging: (111)In chelation, conjugation to poly(ethylene glycol)-biotin linkers, and autoradiography with Alzheimer's disease brain sections. Bioconjug Chem 2000;11:380–386.PubMedCrossRefGoogle Scholar
  66. 66.
    66. Friedland RP, Majocha RE, Reno JM,. Development of an anti-A beta monoclonal antibody for in vivo imaging of amyloid angiopathy in Alzheimer's disease. Mol Neurobiol 1994;9:107–113.PubMedCrossRefGoogle Scholar
  67. 67.
    67. Styren SD, Hamilton RL, Styren GC,. X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer's disease pathology. J Histochem Cytochem 2000;48:1223–1232.PubMedCrossRefGoogle Scholar
  68. 68.
    68. Klunk W, Bacskai BJ, Mathis CA,. Imaging Aβ plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo Red derivative. J Neuropathol Exp Neurol 2002;61:797–805.PubMedGoogle Scholar
  69. 69.
    69. Lee C-W, Zhuang Z-P, Kung M-P,. Isomerization of (Z,Z) to (E,E)1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene in strong base: probes for amyloid plaques in the brain. J Med Chem 2001;44:2270–2275.PubMedCrossRefGoogle Scholar
  70. 70.
    70. Mathis CA, Wang Y, Holt DP,. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003;46:2740–2754.PubMedCrossRefGoogle Scholar
  71. 71.
    71. Neumaier B, Deisenhofer S, Fürst D,. Radiosynthesis and evaluation of [11C]BTA-1 and [11C]3'-Me-BTA-1 as potential radiotracers for in vivo imaging of β-amyloid plaques. Nuklearmedizin 2007;46:271–280.PubMedGoogle Scholar
  72. 72.
    72. Kung M-P, Hou C, Zhuang, Z-P,. IMPY: an improved thioflavin-T derivative for in vivo labeling of β-amyloid plaques. Brain Res 2002;956:202–210.PubMedCrossRefGoogle Scholar
  73. 73.
    73. Cai L, Chin FT, Pike VW,. Synthesis and evaluation of two 18F-labeled 6-iodo-2-(4′-N,N-dimethylamino)phenylimidazo[1,2-a]pyridine derivatives as prospective radioligands for β-amyloid in Alzheimer's disease. J Med Chem 2004;47:2208–2218.PubMedCrossRefGoogle Scholar
  74. 74.
    74. Zeng F, Southerland JA, Voll RJ,. Synthesis and evaluation of two 18F-labeled imidazo[1,2-a]pyridine analogs as potential agents for imaging β-amyloid in Alzheimer's disease. Bioorg Med Chem Lett 2006;16:3015–3018.PubMedCrossRefGoogle Scholar
  75. 75.
    75. Ono M, Kawashima H, Nonaka A,. Novel benzofuran derivatives for PET imaging of β-amyloid plaques in Alzheimer's disease brains. J Med Chem 2006;49:2725–2730.PubMedCrossRefGoogle Scholar
  76. 76.
    76. Zhuang ZP, Kung M-P, Hou C,. IBOX(2-(4′-dimethylaminophenyl)-6-iodobenzoxazole): a ligand imaging amyloid plaques in the brain. Nucl Med Biol 2001;28:887–894.PubMedCrossRefGoogle Scholar
  77. 77.
    77. Kudo Y, Okamura N, Furumoto S,. 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer's disease patients. J Nucl Med 2007;48:553–561.PubMedCrossRefGoogle Scholar
  78. 78.
    78. Okamura N, Suemoto T, Shimadzu H,. Styrylbenzoxazole derivatives for in vivo imaging of amyloid plaques in the brain. J Neurosci 2004;24:2535–2541.PubMedCrossRefGoogle Scholar
  79. 79.
    79. Suemoto T, Okamura N, Shiomitsu T,. In vivo labeling of amyloid with BF-108. Neurosci Res 2004;48:65–74.PubMedCrossRefGoogle Scholar
  80. 80.
    80. Chandra R, Kung M-P, Kung HK. Design, synthesis, and structure-activity relationship of novel thiophene derivatives for β-amyloid plaque imaging. Bioorg Med Chem Lett 2006;16:1350–1352.PubMedCrossRefGoogle Scholar
  81. 81.
    81. Ono M, Yoshida N, Ishibashi K,. Radioiodinated flavones for in vivo imaging of β-amyloid plaques in the brain. J Med Chem 2005;48:7253–7260.PubMedCrossRefGoogle Scholar
  82. 82.
    82. Ono M, Maya Y, Haratake M,. Aurones serve as probes of β-amyloid plaques in Alzheimer's disease. Biochem Biophys Res Comm 2007;361:116–121.PubMedCrossRefGoogle Scholar
  83. 83.
    83. Lee C-W, Kung M-P, Hou C,. Dimethylamino-fluorenes: ligands for detecting β-amyloid plaques in the brain. Nucl Med Biol 2003;30:573–580.PubMedCrossRefGoogle Scholar
  84. 84.
    84. Ono M, Wilson A, Nobrega J,. 11C-labeled stilbene derivatives as Aβ-aggregate-specific PET imaging agents for Alzheimer's disease. Nucl Med Biol 2003;30:565–571.PubMedCrossRefGoogle Scholar
  85. 85.
    85. Rowe CC, Ackerman U, Browne W,. Imaging of amyloid β in Alzheimer's disease with 18F-BAY94–9172, a novel PET tracer: proof of mechanism. Lancet Neurol 2008;7:129–135.PubMedCrossRefGoogle Scholar
  86. 86.
    86. Zhang W, Oya S, Kung M-P,. F-18 stilbenes as imaging agents for detecting β-amyloid plaques in the brain. J Med Chem 2005;48:5980–5988.PubMedCrossRefGoogle Scholar
  87. 87.
    87. Zhang W, Oya S, Kung M-P,. F-18 Polyethylene glycol stilbenes as PET imaging agents targeting Aβ aggregates in the brain. Nucl Med Biol 2005;32:799–809.PubMedCrossRefGoogle Scholar
  88. 88.
    88. Zhuang Z-P, Kung M-P, Kung HF. Synthesis of biphenyltrienes as probes for β-amyloid plaques. J Med Chem 2006;49:2841–2844.PubMedCrossRefGoogle Scholar
  89. 89.
    89. Agdeppa ED, Kepe V, Liu J,. 2-Dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP Analogs): novel diagnostic and therapeutic tools in Alzheimer's disease. Mol Imaging Biol 2003;4:404–417.Google Scholar
  90. 90.
    90. Okamura N, Suemoto T, Furumoto S,. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer's disease. J Neurosci 2005;25:10857–10862.PubMedCrossRefGoogle Scholar
  91. 91.
    91. Small GW, Kepe V, Ercoli L,. FDDNP-PET scanning of cerebral amyloid and tau deposits in MCI. N Engl J Med 2006;355:2652–2663.PubMedCrossRefGoogle Scholar
  92. 92.
    92. Klunk WE, Engler H, Nordberg A,. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004;55:306–319.PubMedCrossRefGoogle Scholar
  93. 93.
    93. Verhoeff NP, Wilson AA, Takeshita S,. In vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 2004;12:584–595.PubMedGoogle Scholar
  94. 94.
    94. Newberg AB, Wintering NA, Plössl K, Safety, biodistribution and dosimetry of 123I-IMPY: a novel amyloid plaque-imaging agent for the diagnosis of Alzheimer's disease. J Nucl Med 2006;47; 748–754.PubMedGoogle Scholar
  95. 95.
    95. Shoghi-Jadid K, Small GW, Agdeppa ED,. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 2002;10:24–35.PubMedGoogle Scholar
  96. 96.
    96. Barrio JR, Huang S-C, Cole G,. PET imaging of tangles and plaques in Alzheimer disease with a highly hydrophobic probe. J Label Compd Radiopharm 1999;42(Suppl 1):S194–S195.Google Scholar
  97. 97.
    97. Agdeppa ED, Kepe V, Shoghi-Jadid K, In vivo and in vitro labeling of plaques and tangles in the brain of an Alzheimer's disease patient: a case study. J Nucl Med 2001;42(Suppl):65P.Google Scholar
  98. 98.
    98. Agdeppa ED, Kepe V, Liu J, Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer's disease. J Neurosci 2001;21:RC189 (1–5).Google Scholar
  99. 99.
    99. Agdeppa ED, Kepe V, Petriĕ A,. In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer's brain using the positron emission tomography molecular imaging probe 2-(1-[6-[(2-[(18)F]fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene)malononitrile. Neuroscience 2003;117:723–730.PubMedCrossRefGoogle Scholar
  100. 100.
    100. Kepe V, Cole GM, Liu J,. [F-18]MicroPET imaging of β-amyloid deposits in the living brain of triple transgenic rat model of β-amyloid deposition. Mol Imaging Biol 2005;7:105.Google Scholar
  101. 101.
    101. Smid LM, Vovko TD, Popovic M,. The 2,6-disubstituted naphthalene derivative FDDNP labeling reliably predicts Congo red birefringence of protein deposits in brain sections of selected human neurodegenerative diseases. Brain Pathol 2006;16:124–130.PubMedCrossRefGoogle Scholar
  102. 102.
    102. Bresjanac M, Smid LM, Vovko TD,. Molecular imaging probe 2-(1-{6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl}-ethylidene)malononitrile labels prion plaques in vitro . J Neurosci 2003;23:8029–8033.PubMedGoogle Scholar
  103. 103.
    103. Boxer AL, Rabinovici GD, Kepe V,. Amyloid imaging in distinguishing atypical prion disease from Alzheimer disease. Neurology 2007;69:283–290.PubMedCrossRefGoogle Scholar
  104. 104.
    104. Engler H, Forsberg A, Almkvist O,. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 2006;129:2856–2866.PubMedCrossRefGoogle Scholar
  105. 105.
    105. Mintun MA, Larossa GN, Sheline YI,. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006;67:446–452.PubMedCrossRefGoogle Scholar
  106. 106.
    106. Kemppainen NM, Aalto S, Wilson IA,. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 2007;68:1603–1606.PubMedCrossRefGoogle Scholar
  107. 107.
    107. Jack CR Jr, Lowe VJ, Senjem ML,. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008;131:665–680.PubMedCrossRefGoogle Scholar
  108. 108.
    108. Cummings BJ, Pike CJ, Shankle R,. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiol Aging 1996;17:921–933.PubMedCrossRefGoogle Scholar
  109. 109.
    109. Sadowski M, Wisniewski T. Disease modifying approaches for Alzheimer's pathology. Curr Pharm Des 2007;13:1943–1954.PubMedCrossRefGoogle Scholar
  110. 110.
    110. Toyama H, Ye D, Ichise M,. PET imaging of brain with β-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer's disease. Eur J Nucl Med Mol Imaging 2005;32:593–600.PubMedCrossRefGoogle Scholar
  111. 111.
    111. Klunk WE, Lopresti BJ, Ikonomovic MD,. Binding of the positron emission tracer Pittsburgh compound-B reflects the amount of amyloid-β in Alzheimer's disease brain but not in transgenic mouse brain. J Neurosci 2005;25:10598–10606.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Vladimir Kepe
    • 1
  • Sung-Cheng Huang
    • 2
  • Gary W. Small
    • 3
  • Nagichettiar Satyamurthy
    • 4
  • Jorge R. Barrio
    • 5
  1. 1.Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine, University of CaliforniaCA
  2. 2.Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine, University of CaliforniaCA
  3. 3.Department of Psychiatry and Biobehavioral Sciencesthe Semel Institute for Neuroscience and Human Behavior and the Resnick Neuropsychiatric Hospital at the University of CaliforniaCA
  4. 4.Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine, University of CaliforniaCA
  5. 5.Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine, University of CaliforniaCA

Personalised recommendations