The Baboon Model of Epilepsy: Current Applications in Biomedical Research

  • C. Ákos Szabó
  • M. Michelle Leland
  • Koyle D. Knape
  • Jeff T. Williams
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Epilepsy is a condition of recurrent, unprovoked seizures (Adams and Victor, 1993). Seizures are episodic changes in behavior associated with a synchronized electrical discharge from the populations of neurons in the cerebral cortex. To classify human epilepsies as focal or generalized, clinicians rely on a seizure description combined with electroencephalography (EEG) (Commission on the Classification and Terminology of the International League Against Epilepsy, 1981 and 1989). Because seizures are rarely recorded in brief EEG samples, clinicians rely on the the detection of interictal (between seizures) epileptic discharges, which serve as markers for the seizure type. Focal epilepsies begin with focal symptomatology and are associated with interictal epileptic discharges (IEDs) that are focal or lateralized to one cerebral hemisphere. Generalized epilepsies are associated with sudden unresponsiveness or bilateral motor symptoms at onset, and IEDs tend to involve both hemispheres simultaneously. While most focal epilepsies are symptomatic, related to a localized structural lesion, generalized epilepsies are predominantly idiopathic, and considered to be heritable.


Generalize Epilepsy Juvenile Myoclonic Epilepsy Myoclonic Seizure Spontaneous Seizure Ictal Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, R. D., and Victor, M. (1993). Epilepsy and other seizure disorders. In: Victor, M., and Adams, R. D. (eds.). Principles of Neurology, 5th ed. McGraw-Hill, Health Services Division, New York, pp. 273–299.Google Scholar
  2. Aghakhani, Y., Bagshaw, A. P., Benar, C. G., Hawco, C., Andermann, F., Dubeau, F., and Gotman, J. (2004). fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 127:1127–1144.CrossRefPubMedGoogle Scholar
  3. Andén, N. E., Rubenson, A., Fuxe, K., and Hökfelt, T. (1967). Evidence of dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19:627–629.PubMedGoogle Scholar
  4. Arfel, G., De Laverde, M., De Pommery, J., and De Pommery, H. (1976). Action de la ketamine sur les decharges paroxystiques provoquees par embolie aerique chez le babouin Papio-papio. Electroencephalogr. Clin. Neurophysiol. 41:357–366.CrossRefPubMedGoogle Scholar
  5. Balzamo, E., Bert, J., Menini, C., and Naquet, R. (1975). Excessive light sensitivity in Papio papio: Its variation with age, sex, and geographic origin. Epilepsia 16:269–276.CrossRefPubMedGoogle Scholar
  6. Bittar, R. G., Andermann, F., Olivier, A., Dubeau, F., Dumoulin, S. O., Pike, G. B., and Reutens, D. C. (1999). Interictal spikes increase cerebral glucose metabolism and blood flow: A PET study. Epilepsia 40:170–178.CrossRefPubMedGoogle Scholar
  7. Brailowsky, S., Silva-Barrat, C., Menini, C., Riche, D., and Naquet R. (1989). Effects of localized, chronic GABA infusions into different cortical areas of the photosensitive baboon, Papio papio. Electroencephalogr. Clin. Neurophysiol. 72:147–156.CrossRefPubMedGoogle Scholar
  8. Carlier, E., Cherubini, E. Dimov, S., and Naquet, R. (1973). Resection des nerfs faciaux et de la musculature périoculaire chez le Papio papio photosensible. Electroencephalogr. Clin. Neurophysiol. 35:13–23.CrossRefPubMedGoogle Scholar
  9. Commission on Classification and Terminology of the International League Against Epilepsy. (1981). Proposal for revised clinical and electroencephalographic classification for epileptic seizures. Epilepsia 22:489–501.CrossRefGoogle Scholar
  10. Commission on Classification and Terminology of the International League Against Epilepsy. (1989). Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:389–399.CrossRefGoogle Scholar
  11. Corcoran, M. E., Cain, D. P., and Wada, J. A. (1979). Photically induced seizures in the yellow baboon, Papio cynocephalus. Can. J. Neurol. Sci. 6:129–131.PubMedGoogle Scholar
  12. Da Silva, E. A., Muller, R-A., Chugani, D. C., Shah, J., Shah, A., Watson, C., and Chugani, H. T. (1990). Brain activation during intermittent photic stimulation: A [15O]-water PET study on photosensitive epilepsy. Epilepsia 40(Suppl. 4):17–22.Google Scholar
  13. Diehl, B., Knecht, S., Deppe, M., Young, C., and Stodieck, S. R. G. (1998). Cerebral hemodynamic response to generalized spike-wave discharges. Epilepsia 39:1284–1289.CrossRefPubMedGoogle Scholar
  14. Ehlers, C. L., and Killam, E. K. (1982). The effects of constant light on EEG and seizure activity in the epileptic baboon. Electroencephalogr. Clin. Neurophysiol. 54:187–193.CrossRefPubMedGoogle Scholar
  15. Ferrer-Allado, T., Brechner, V. L., Dymond, A., Cozen, H., and Crandall, P. (1973). Ketamine-induced electroconvulsive phenomena in the human limbic and thalamic regions. Anesthesiology 38:333–344.CrossRefPubMedGoogle Scholar
  16. Fischer-Williams, M., Poncet, M., Riche, D., and Naquet, R. (1968). Light-induced epilepsy in the baboon, Papio papio: Cortical and depth recordings. Electroencephalogr. Clin. Neurophysiol. 25:557–569.CrossRefPubMedGoogle Scholar
  17. Fox, P. T., and Raichle, M. E. (1985). Stimulus rate determines regional brain blood flow in striate cortex. Ann. Neurol. 17:303–305.CrossRefPubMedGoogle Scholar
  18. Fukuda, H., Valin, A., Bryere, P., Riche, D., Wada J. A., and Naquet, R. (1988). Role of the forebrain commissure and hemispheric independence in photosensitive response of epileptic baboon, Papio papio. Electroencephalogr. Clin. Neurophysiol. 69:363–370.CrossRefPubMedGoogle Scholar
  19. Fukuda, H., Valin, A., Menini, C., Boscher, C., de la Sayette, V., Riche, D., Kunimoto, M., Wada, J. A., and Naquet, R. (1989). Effect of macular and peripheral retina coagulation on photosensitive epilepsy in the forebrain bisected baboon, Papio papio. Epilepsia 30: 623–630.CrossRefPubMedGoogle Scholar
  20. Geddes, J. W., Cooper, S. M., Cotman C. W., Patel, S., and Meldrum, B. S. (1989). N-methyl-D-aspartate receptors in the cortex and hippocampus of baboon (Papio anubis and Papio papio). Neuroscience 32:39–47.CrossRefPubMedGoogle Scholar
  21. Hill, R. A., Chiappa, K. H., Huang-Hellinger, F., and Jenkins, B. G. (1999). Hemodynamic and metabolic aspects of photosensitive epilepsy revealed by functional magnetic resonance imaging and magnetic resonance spectroscopy. Epilepsia 40:912–920.CrossRefPubMedGoogle Scholar
  22. Ito, H., Takahashi, K., Hatazawa, J., Kim, S-G., and Kanno, I. (2001). Changes in human regional cerebral blood flow and cerebral blood volume during visual stimulation measured by positron emission tomography. J. Cereb. Blood Flow Metab. 21:608–612.CrossRefPubMedGoogle Scholar
  23. Janz, D., and Durner, M. (1997). Juvenile myoclonic epilepsy. In: Engel, J., Jr., and Pedley, T.A. (eds.). Epilepsy: A Comprehensive Textbook. Lippincott-Raven Publishers, Philadelphia, pp. 2389–2400.Google Scholar
  24. Kapucu, L. Ö., Gücüyener, K., Vural, G., Köse, G., Tokçaer, A. B., Turgut, B., and Ünlü, M. (1996). Brain SPECT evaluation of patients with pure photosensitive epilepsy. J. Nucl. Med. 37:1755–1759.PubMedGoogle Scholar
  25. Killam, E. K. (1976). Measurement of anticonvulsant activity in the Papio papio model of epilepsy. Fed. Proc. 35:2264–2269.Google Scholar
  26. Killam, K. F., Naquet, R., and Bert, J. (1966). Paroxysmal responses to intermittent light stimulation in a population of baboons (Papio papio). Epilepsia 7(Ser. 4):215–219.CrossRefGoogle Scholar
  27. Killam K. F., Killam, E. K., and Naquet, R. (1967a). An animal model of light sensitive epilepsy. Electroencephalogr. Clin. Neurophysiol. 22:497–513.Google Scholar
  28. Killam, E. K., Starck, L. G., and Killam, K. F. (1967b). Photic-stimulation in three species of baboons. Life Sci. 6:1569–1574.Google Scholar
  29. Lloyd, K. G., Scatton, B., Voltz, C., Bryere, P., Valin, A., and Naquet, R. (1986). Cerebrospinal fluid amino acid and monoamine metabolite levels of Papio papio: Correlation with photosensitivity. Brain Res. 363:390–394.CrossRefPubMedGoogle Scholar
  30. Löscher, W., and Meldrum, B. S. (1984). Evaluation of anticonvulsant drugs in genetic animal models of epilepsy. Fed. Proc. 43:276–284.Google Scholar
  31. Meeren, H., van Luijtelaar, G., Lopes da Silva, F., and Coenen, A. (2005). Evolving concepts on the pathophysiology of absence seizures: The cortical focus theory. Arch. Neurol. 62:371–376.CrossRefPubMedGoogle Scholar
  32. Meldrum, B. S., Anlezark, G., Balzamo, E., Horton, R. W., and Trimble, M. (1975). Photically induced epilepsy in Papio papio as a model for drug studies. In: Meldrum, B. S., and Marsden, C. D. (eds.), Adv. Neurol., Vol. 10, Lippicott-Raven Publishers, Philadelphia, pp. 119–132.Google Scholar
  33. Menini, C., and Silva-Barrat, C. (1998). The photosensitivity of the baboon: A model of generalized reflex epilepsy. Adv. Neurol. 75:29–47.PubMedGoogle Scholar
  34. Menini, C., Stutzmann, J. M., Laurent, H., and Naquet, R. (1980). Paroxysmal visual evoked potentials (PVEPs) in Papio papio. I. Morphological and topographical characteristics. Comparison with paroxysmal discharges. Electroencephalogr. Clin. Neurophysiol. 50:356–364.CrossRefPubMedGoogle Scholar
  35. Mentis, M. J., Alexander, G. E., Grady, C. L., Horowitz, B., Krasuski, J., Pietrini, P., Strassburger, T., Hample, H., Schapiro, M. B., and Rapoport, S. I. (1997). Frequency variation of a pattern-flash visual stimulus during PET differentially activates brain from striate through frontal cortex. NeuroImage 5:116–128.CrossRefPubMedGoogle Scholar
  36. Mintun, M. A., Vlassenko, A. G., Shulman, G. L., and Snyder, A. Z. (2002). Time-related increase of oxygen utilization in continuously activated human visual cortex. NeuroImage 16:531–537.CrossRefPubMedGoogle Scholar
  37. Naquet, R., and Meldrum, B. S. (1972). Photogenic seizures in baboon. In: Purpura, D. P., Penry, J. K., Tower, D. B., Woodbury, D. M., and Walter, R. D. (eds.), Experimental Models of Epilepsy – A Manual for the Laboratory Worker. Raven Press, New York, pp. 373–406.Google Scholar
  38. Naquet, R. G., and Valin, A. (1998). Experimental models of reflex epilepsy. Adv. Neurol. 75: 15–28.PubMedGoogle Scholar
  39. Naquet, R., Killam, K. F., and Rhodes, J. M. (1967). Flicker stimulation with chimpanzees. Life Sci. 6:1575–1578.CrossRefPubMedGoogle Scholar
  40. Pedley, T. A. (1997). EEG traits. In: Engel, J., Jr., and Pedley, T. A. (eds.), Epilepsy: A Comprehensive Textbook. Lippincott-Raven Publishers, Philadelphia, pp. 185–196.Google Scholar
  41. Riche, D. (1980). Afferents to the frontal and occipital lobes in the baboon studied with horseradish peroxidase transport. Neurosci. Lett. Suppl. 5:198.Google Scholar
  42. Riche, D., Gambarelli-Dubois, D., and Naquet, R. (1970). Crises fréquentes et lesions anatomiques chez le Papio papio photosensible. Rev. Neurol. (Paris) 123:257–258.Google Scholar
  43. Riche, D., Behzadi, G., Calderazzo Filho, L. S., and Guillon, R. (1982). Cortical and subcortical connections of the parietal area 7 in the baboon: Using the horseradish peroxidase (HRP) transport. Neurosci. Lett. Suppl. 10:409–410.Google Scholar
  44. Rogers, J., and Hixson, J. E. (1997). Baboons as an animal model for genetic studies of common human diseases. Am. J. Hum. Genet. 61:489–493.CrossRefPubMedGoogle Scholar
  45. Sarkisian, M. R. (2001). Overview of the current animal models for human seizure and epileptic disorders. Epilepsy Behav. 2:201–216.CrossRefPubMedGoogle Scholar
  46. Serbanescu, T., Naquet, R., and Menini, C. (1973). Various physical parameters which influence photosensitive epilepsy in the Papio papio. Brain Res. 52:145–158.CrossRefPubMedGoogle Scholar
  47. Silva-Barrat, C., and Menini, C. (1984). The influence of intermittent light stimulation on potentials evoked by single flashes in photosensitive and non-photosensitive Papio papio. Electroencephalogr. Clin. Neurophysiol. 57:448–461.CrossRefPubMedGoogle Scholar
  48. Silva-Barrat, C., Menini, C., Bryere, P., and Naquet, R. (1986). Multiunitary activity analysis of cortical and subcortical structures in paroxysmal discharges and grand mal seizures in photosensitive baboons. Electroencephalogr. Clin. Neurophysiol. 64:455–468.CrossRefPubMedGoogle Scholar
  49. Silva-Barrat, C., Brailowsky, S., Riche, D., and Menini, C. (1988). Anticonvulsant effects of localized chronic infusions of GABA in cortical and reticular structures of baboons. Exp. Neurol. 101:418–427.CrossRefPubMedGoogle Scholar
  50. Stark, L. G., Joy, R. M., Hance, A. J., and Killam, K. F. (1968). Further studies of photic stimulation in sub-human primates. Life Sci. 7:1037–1039.CrossRefPubMedGoogle Scholar
  51. Stark, L. G., Killam, K. F., and Killam, E. K. (1970). The anticonvulsant effects of phenobarbital, diphenylhydantoin and two benzodiazepines in the baboon, Papio papio. J. Pharmacol. Exp. Ther. 173:125–132.PubMedGoogle Scholar
  52. Stutzmann, J. M., Laurent, H., Valin, A., and Menini, C. (1980). Paroxysmal visual evoked potentials (PVEPs) in the Papio papio. II. Evidence for a facilitatory effect of intermittent photic stimulation. Electroencephalogr. Clin. Neurophysiol. 50:365–574.CrossRefGoogle Scholar
  53. Szabó, C. Á., Leland, M. M., Sztonak, L., Restrepo, S., Haines, R., Mahaney, M. A. [sic], and Williams, J. T. (2004). Scalp EEG for the diagnosis of epilepsy and photosensitivity in the baboon. Am. J. Primatol. 62:95–106.Google Scholar
  54. Szabó, C. Á., Leland, M. M., Knape, K. D., Elliot, J. J., Haines, V., and Williams, J. T. (2005). Clinical and EEG phenotypes of epilepsy in the baboon (Papio hamadryas spp.). Epilepsy Res. 65:71–80.CrossRefPubMedGoogle Scholar
  55. Szabó, C. Á., Narayana, S., Kochunov, P. V., Franklin, C., Knape, K., Davis, M. D., Fox, P. T., Leland, M. M., and Williams, J. T. (2007). PET imaging in the photosensitive baboon: Case-controlled study. Epilepsia 48:245–253.CrossRefPubMedGoogle Scholar
  56. Ticku, M. K., Lee, J. C., Murk, S., Mhatre, M. C., Story, J. L., Kagan-Hallet, K., Luther, J. S., MacCluer, J. W., Leland, M. M., and Eidelberg, E. (1992). Inhibitory and excitatory amino acid receptors, c-fos expression, and calcium-binding proteins in the brain of baboons (Papio hamadryas) that exhibit 'spontaneous' grand mal epilepsy. Epilepsy Res. Suppl. 9:141–149.PubMedGoogle Scholar
  57. VandeBerg, J. L., and Williams-Blangero, S. (1997). Advantages and limitations of nonhuman primates as animal models in genetic research on complex disease. J. Med. Primatol. 26: 113–119.PubMedGoogle Scholar
  58. Wada, J. A., Terao, A., and Booker, H. E. (1972a). Longitudinal correlative analysis of epileptic baboon, Papio papio. Neurology 22:1272–1285.Google Scholar
  59. Wada, J. A., Balzamo, E., Meldrum, B. S., and Naquet, R. (1972b). Behavioural and electrographic effects of L-5-hydroxytryptophan and D,L-parachlorophenyl-alanine on epileptic Senegalese baboon (Papio papio). Electroencephalogr. Clin. Neurophysiol. 33:520–526.Google Scholar
  60. Walczak, T. S., and Jayakar, P. (1997). Interictal EEG. In: Engel, J., Jr., and Pedley, T. A. (eds.), Epilepsy: A Comprehensive Textbook. Lippincott-Raven Publishers, Philadelphia, pp. 831–848.Google Scholar
  61. Williams, J. T., Leland, M. M., Knape, K. D., and Szabó, C. Á. (2005). Epidemiology of seizures in a baboon colony. Epilepsia Suppl. 8:306.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. Ákos Szabó
    • 1
  • M. Michelle Leland
    • 2
  • Koyle D. Knape
    • 1
  • Jeff T. Williams
    • 3
  1. 1.South Texas Comprehensive Epilepsy CenterUniversity of Texas Health Science CenterSan Antonio
  2. 2.Laboratory Animal ResourcesUniversity of Texas Health Science CenterSan Antonio
  3. 3.Department of Genetics and Southwest National Primate Research CenterSouthwest Foundation for Biomedical ResearchSan Antonio

Personalised recommendations