Neuroimaging in Baboons

  • Kevin J. Black
  • Tamara Hershey
  • Stephen M. Moerlein
  • Joel S. Perlmutter
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

The use of animal models is crucial because many important scientific questions require experimental designs precluded in humans by ethical considerations. These designs include experimental brain lesions, investigational treatments, untreated controls for disease, and invasive physiological monitoring. Important brain functions differ between primates and rodents (Berger et al., 1991), so some investigations of human-relevant physiology require nonhuman primate subjects. Additionally, development of new research techniques in nonhuman primates allows estimation of the data required to judge safety for later human applications, such as dosing and toxicology for a new computed tomography (CT) contrast agent.


Positron Emission Tomography Single Photon Emission Computerize Tomography Positron Emission Tomography Study Positron Emission Tomography Data Positron Emission Tomography Tracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackermann, R. F., Finch, D. M., Babb, T. L., and Engel, J., Jr. (1984). Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J. Neurosci. 4:251–264.PubMedGoogle Scholar
  2. Akbudak, E., and Conturo, T. E. (1996). Arterial input functions for MR phase imaging. Magn. Reson. Med. 36:809–815.CrossRefPubMedGoogle Scholar
  3. Akbudak, E., Norberg, R. E., and Conturo, T. E. (1997). Contrast-agent phase effects: An experimental system for analysis of susceptibility, concentration, and bolus input function kinetics. Magn. Reson. Med. 38:990–1002.CrossRefPubMedGoogle Scholar
  4. Akeson, J., Bjorkman, S., Messeter, K., Rosen, I., and Helfer, M. (1993). Cerebral pharmacodynamics of anaesthetic and subanaesthetic doses of ketamine in the normoventilated pig. Acta Anaesthesiol. Scand. 37:211–218.CrossRefPubMedGoogle Scholar
  5. Ali-Melkkila, T., Kanto, J., and Lisalo, E. (1993). Pharmacokinetics and related pharmacodynamics of anticholinergic drugs. Acta Anaesthesiol. Scand. 37:633–642.CrossRefPubMedGoogle Scholar
  6. Andreu, N., Chale, J. J., Senard, J. M., Thalamas, C., Montastruc, J. L., and Rascol, O. (1999). l-Dopa-induced sedation: A double-blind cross-over controlled study versus triazolam and placebo in healthy volunteers. Clin. Neuropharmacol. 22:15–23.CrossRefPubMedGoogle Scholar
  7. Archer, D. P., Labrecque, P., Tyler, J. L., Meyer, E., Evans, A. C., Villemure, J. G., Casey, W. F., Diksic, M., Hakim, A. M., and Trop, D. (1990). Measurement of cerebral blood flow and volume with positron emission tomography during isoflurane administration in the hypocapnic baboon. Anesthesiology 72:1031–1037.CrossRefPubMedGoogle Scholar
  8. Ashburner, J., and Friston, K. J. (1999). Nonlinear spatial normalization using basis functions. Hum. Brain Mapp. 7:254–266.CrossRefPubMedGoogle Scholar
  9. Azuma, H., Miyazawa, T., Mizokawa, T., Magota, A., and Hara, K. (1988). [Stimulatory effects of lisuride on local cerebral blood flow and local cerebral glucose utilization in rats]. [Japanese]. Nippon Yakurigaku Zasshi 91:341–349.CrossRefPubMedGoogle Scholar
  10. Beck, T., Vogg, P., and Krieglstein, J. (1986). Effects of the indirect dopaminomimetic diethylpemoline on local cerebral glucose utilization and local cerebral blood flow in the conscious rat. Eur. J. Pharmacol. 125:437–447.CrossRefPubMedGoogle Scholar
  11. Berger, B., Gaspar, P., and Verney, C. (1991). Dopaminergic innervation of the cerebral cortex: Unexpected differences between rodents and primates. Trends Neurosci. 14:21–27.CrossRefPubMedGoogle Scholar
  12. Black, K. J., Videen, T. O., and Perlmutter, J. S. (1996). A metric for testing the accuracy of cross-modality image registration: Validation and application. J. Comput. Assist. Tomogr. 20: 855–861.CrossRefPubMedGoogle Scholar
  13. Black, K. J., Gado, M. H., and Perlmutter, J. S. (1997a). PET measurement of dopamine D2 receptor-mediated changes in striatopallidal function. J. Neurosci. 17:3168–3177.Google Scholar
  14. Black, K. J., Gado, M. H., Videen, T. O., and Perlmutter, J. S. (1997b). Baboon basal ganglia stereotaxy using internal MRI landmarks: Validation and application to PET imaging. J. Comput. Assist. Tomogr. 21:881–886.Google Scholar
  15. Black, K. J., Hershey, T., Gado, M. H., and Perlmutter, J. S. (2000). Dopamine D(1) agonist activates temporal lobe structures in primates. J. Neurophysiol. 84:549–557.PubMedGoogle Scholar
  16. Black, K. J., Koller, J. M., Snyder, A. Z., and Perlmutter, J. S. (2001a). Template images for nonhuman primate neuroimaging: 2. Macaque. Neuroimage 14:744–748.Google Scholar
  17. Black, K. J., Snyder, A. Z., Koller, J. M., Gado, M. H., and Perlmutter, J. S. (2001b). Template images for nonhuman primate neuroimaging: 1. Baboon. Neuroimage 14:736–743.Google Scholar
  18. Black, K. J., Hershey, T., Koller, J. M., Carl, J. L., and Perlmutter, J. S. (2002a). Mapping and quantification of dopamine D2 receptor activation. J. Neuropsychiatr. Clin. Neurosci. 14: 118–119.Google Scholar
  19. Black, K. J., Hershey, T., Koller, J. M., Videen, T. O., Mintun, M. A., Price, J. L., and Perlmutter, J. S. (2002b). A possible substrate for dopamine-related changes in mood and behavior: Prefrontal and limbic effects of a D3-preferring dopamine agonist. Proc. Natl. Acad. Sci. U.S.A. 99:17113–17118.Google Scholar
  20. Black, K. J., Koller, J. M., Snyder, A. Z., and Perlmutter, J. S. (2004). Atlas template images for nonhuman primate neuroimaging: Baboon and macaque. Methods Enzymol. 385:91–102.CrossRefPubMedGoogle Scholar
  21. Black, K. J., Hershey, T., Hartlein J. M., Carl, J. L., and Perlmutter, J. S. (2005) Levodopa challenge neuroimaging of levodopa-related mood fluctuations in Parkinson’s disease. Neuropsychopharmacology. 30:590–601.CrossRefPubMedGoogle Scholar
  22. Blaizot, X., Landeau, B., Baron, J. C., and Chavoix, C. (2000). Mapping the visual recognition memory network with PET in the behaving baboon. J. Cereb. Blood Flow Metab. 20:213–219.CrossRefPubMedGoogle Scholar
  23. Bowden, D. M., and Dubach, M. F. (2000). Applicability of the Template Atlas to various primate species. In: Martin, R. F., and Bowden, D. M. (eds.), Primate Brain Maps: Structure of the Macaque Brain. Elsevier Science, New York, pp. 38–47.Google Scholar
  24. Cannestra, A. F., Santori, E. M., Holmes, C. J., and Toga, A. W. (1997). A three-dimensional multimodality brain map of the nemestrina monkey. Brain Res. Bull. 43:141–148.CrossRefPubMedGoogle Scholar
  25. Conturo, T. E., Barker, P. B., Mathews, V. P., Monsein, L. H., and Bryan, R. N. (1992). MR imaging of cerebral perfusion by phase-angle reconstruction of bolus paramagnetic-induced frequency shifts. Magn. Reson. Med. 27:375–390.CrossRefPubMedGoogle Scholar
  26. Davis, R., and Huffman, R. (1968). A stereotaxic atlas of the brain of the baboon (Papio). University of Texas Press, Austin, Texas.Google Scholar
  27. Dewey, S. L., Smith, G. S., Logan, J., Alexoff, D., Ding, Y. S., King, P., Pappas, N., Brodie, J. D., and Ashby, C. R., Jr. (1995). Serotonergic modulation of striatal dopamine measured with positron emission tomography (PET) and in vivo microdialysis. J. Neurosci. 15:821–829.PubMedGoogle Scholar
  28. Engber, T. M., Anderson, J. J., Boldry, R. C., Kuo, S., and Chase, T. N. (1993). N-methyl-d-aspartate receptor blockade differentially modifies regional cerebral metabolic responses to D1 and D2 dopamine agonists in rats with a unilateral 6-hydroxydopamine lesion. Neuroscience 54:1051–1061.CrossRefPubMedGoogle Scholar
  29. Fox, P. T., Perlmutter, J. S., and Raichle, M. E. (1985). A stereotactic method of anatomical localization for positron emission tomography. J. Comput. Assist. Tomogr. 9:141–153.CrossRefPubMedGoogle Scholar
  30. Fox, P. T., Mintun, M. A., Reiman, E. M., and Raichle, M. E. (1988). Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J. Cereb. Blood Flow Metab. 8:642–653.PubMedGoogle Scholar
  31. Green, M. A., Mathias, C. J., Welch, M. J., McGuire, A. H., Perry, D., Fernandez-Rubio, F., Perlmutter, J. S., Raichle, M. E., and Bergmann, S. R. (1990). Copper-62-labeled pyruvaldehyde bis(N 4-methylthiosemicarbazonato)copper(II): Synthesis and evaluation as a positron emission tomography tracer for cerebral and myocardial perfusion. J. Nucl. Med. 31:1989–1996.PubMedGoogle Scholar
  32. Grome, J. J., and McCulloch, J. (1981). The effects of chloral hydrate anesthesia on the metabolic response in the substantia nigra to apomorphine. Brain Res. 214:223–228.CrossRefPubMedGoogle Scholar
  33. Gunn, R. N., Gunn, S. R., and Cunningham, V. J. (2001). Positron emission tomography compartmental models. J. Cereb. Blood Flow Metab. 21:635–652.CrossRefPubMedGoogle Scholar
  34. Gyulai, F. E., Firestone, L. L., Mintun, M. A., and Winter, P. M. (1996). In vivo imaging of human limbic responses to nitrous oxide inhalation. Anesth. Analg. 83:291–298.CrossRefPubMedGoogle Scholar
  35. Hartvig, P., Valtysson, J., Lindner, K. J., Kristensen, J., Karlsten, R., Gustafsson, L. L., Persson, J., Svensson, J. O., Oye, I., Antoni, G., Westerberg, G., Längström, B. (1995). Central-nervous-system effects of subdissociative doses of (S)-ketamine are related to plasma and brain concentrations measured with positron emission tomography in healthy volunteers. Clin. Pharmacol. Ther. 58:165–173.CrossRefPubMedGoogle Scholar
  36. Heinke, W., and Schwarzbauer, C. (2001). Subanesthetic isoflurane affects task-induced brain activation in a highly specific manner: A functional magnetic resonance imaging study. Anesthesiology 94:973–981.CrossRefPubMedGoogle Scholar
  37. Heinke, W., and Schwarzbauer, C. (2002). In vivo imaging of anaesthetic action in humans: Approaches with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Br. J. Anaesth. 89:112–122.CrossRefPubMedGoogle Scholar
  38. Herscovitch, P. (2001). Can [15O]water be used to evaluate drugs? J. Clin. Pharmacol. 41(Suppl.):11S–20S.Google Scholar
  39. Herscovitch, P., Markham, J., and Raichle, M. (1983). Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J. Nucl. Med. 24:782–789.PubMedGoogle Scholar
  40. Hershey, T., Black, K. J., Carl, J., and Perlmutter, J. S. (1997). Regional blood flow changes induced by l-DOPA methyl ester in normal monkeys. Soc. Neurosci. Abstr. 23:2038.Google Scholar
  41. Hershey, T., Black, K. J., Stambuk, M. K., Carl, J. L., McGee-Minnich, L. A., and Perlmutter, J. S. (1998). Altered thalamic response to levodopa in Parkinson’s patients with dopa-induced dyskinesias. Proc. Natl. Acad. Sci. USA 95:12016–12021.Google Scholar
  42. Hershey, T., Black, K. J., Carl, J. L., and Perlmutter, J. S. (2000). Dopa-induced blood flow responses in nonhuman primates. Exp. Neurol. 166:342–349.CrossRefPubMedGoogle Scholar
  43. Hershey, T., Moerlein, S. M., and Perlmutter, J. S. (2001). PET investigations of Parkinson’s disease. In: Chesselet, M.- F. (ed.), Molecular Mechanisms of Neurodegenerative Diseases. Humana Press, Totowa, New Jersey, pp. 177–193.Google Scholar
  44. Hershey, T., Black, K. J., Carl, J. L., McGee-Minnich, L. A., Snyder, A. Z., and Perlmutter, J. S. (2003). Long-term treatment and disease severity change brain responses to levodopa in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 74:844–851.CrossRefPubMedGoogle Scholar
  45. Hoshi, H., Kuwabara, H., Léger, G., Cumming, P., Guttman, M., and Gjedde, A. (1993). 6-[18F]fluoro-l-dopa metabolism in living human brain: A comparison of six analytical methods. J. Cereb. Blood Flow Metab. 13:57–69.PubMedGoogle Scholar
  46. Hwang, D.- R., Moerlein, S. M., Dence, C. S., and Welch, M. J. (1989). Microwave-facilitated synthesis of [18F]-spiperone. J. Labelled Comp. Radiopharm. 26:391–392.Google Scholar
  47. Ingvar, M., Lindvall, O., and Stenevi, U. (1983). Apomorphine-induced changes in local cerebral blood flow in normal rats and after lesions of the dopaminergic nigrostriatal bundle. Brain Res. 262:259–265.CrossRefPubMedGoogle Scholar
  48. Jevtovic-Todorovic, V., Todorovic, S. M., Mennerick, S., Powell, S., Dikranian, K., Benshoff, N., Zorumski, C. F., and Olney, J. W. (1998). Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat. Med. 4:460–463.CrossRefPubMedGoogle Scholar
  49. Kaufman, J. A., Phillips-Conroy, J. E., Black, K. J., and Perlmutter, J. S. (2003). Asymmetric regional cerebral blood flow in sedated baboons measured by positron emission tomography (PET). Am. J. Phys. Anthropol. 121:369–377.CrossRefPubMedGoogle Scholar
  50. Kelly, P. A. T., and McCulloch, J. (1987). Cerebral glucose utilization following striatal lesions: The effects of the GABA agonist, muscimol, and the dopaminergic agonist, apomorphine. Brain Res. 425:290–300.CrossRefPubMedGoogle Scholar
  51. Lahti, A. C., Holcomb, H. H., Weiler, M. A., Corey, P. K., Zhao, M., Medoff, D., and Tamminga, C. A. (1996). Ketamine-induced effects on behavior and rCBF is enhanced in schizophrenic compared to normal individuals. Soc. Neurosci. Abs. 22(Part 2):1192.Google Scholar
  52. Lanier, W. L., Milde, J. H., and Michenfelder, J. D. (1985). The cerebral effects of pancuronium and atracurium in halothane-anesthetized dogs. Anesthesiology 63:589–597.CrossRefPubMedGoogle Scholar
  53. Larson, K. B., Perman, W. H., Perlmutter, J. S., Gado, M. H., Ollinger, J. M., and Zierler, K. (1994). Tracer-kinetic analysis for measuring regional cerebral blood flow by dynamic nuclear magnetic resonance imaging. J. Theor. Biol. 170:1–14.CrossRefPubMedGoogle Scholar
  54. Lücking, C. B., Durr, A., Bonifati, V., Vaughan, J., De Michele, G., Gasser, T., Harhangi, B. S., Meco, G., Denefle, P., Wood, N. W., Agid, Y., and Brice, A. (2000). Association between early-onset Parkinson’s disease and mutations in the parkin gene. French Parkinson’s Disease Genetics Study Group. N. Engl. J. Med. 342:1560–1567.CrossRefPubMedGoogle Scholar
  55. Marenco, S., Carson, R. E., Herscovitch, P., Berman, K. F., and Weinberger, D. R. (2001). Nicotine-induced dopamine release studied in primates with PET and [11C]raclopride. Presented at Annual Meeting, American College of Neuropsychopharmacology, Waikoloa, Hawaii, 12-9-2001.Google Scholar
  56. Martin, W. R., Powers, W. J., and Raichle, M. E. (1987). Cerebral blood volume measured with inhaled C15O and positron emission tomography. J. Cereb. Blood Flow Metab. 7:421–426.PubMedGoogle Scholar
  57. Mathias, C. J., Welch, M. J., Raichle, M. E., Mintun, M. A., Lich, L. L., McGuire, A. H., Zinn, K. R., John, E. K., and Green, M. A. (1990). Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging: Single-pass cerebral extraction measurements and imaging with radiolabeled Cu-PTSM. J. Nucl. Med. 31:351–359.PubMedGoogle Scholar
  58. McCulloch, J. (1982). Mapping functional alterations in the CNS with [14C]deoxyglucose. In: Iversen, L. L., Iversen, S. D., and Snyder, S. H. (eds.), New Techniques in Psychopharmacology. Plenum Press, New York, pp. 321–410.Google Scholar
  59. McCulloch, J. (1984). Role of dopamine in interactions among cerebral function, metabolism, and blood flow. In: MacKenzie, E. T., Seylaz, J., and Bés, A. (eds.), Neurotransmitters and the Cerebral Circulation. Raven, New York, pp. 137–155.Google Scholar
  60. McCulloch, J., and Harper, A. M. (1977). Cerebral circulation: Effect of stimulation and blockade of dopamine receptors. Am. J. Physiol. 233:H222–H227.PubMedGoogle Scholar
  61. McCulloch, J., and Teasdale, G. (1979). Effects of apomorphine upon local cerebral blood flow. Eur. J. Pharmacol. 55:99–102.CrossRefPubMedGoogle Scholar
  62. McCulloch, J., Kelly, P. A., and Ford, I. (1982). Effect of apomorphine on the relationship between local cerebral glucose utilization and local cerebral blood flow (with an appendix on its statistical analysis). J. Cereb. Blood Flow Metab. 2:487–499.PubMedGoogle Scholar
  63. McEvoy, J. P., and Freter, S. (1989). The dose-response relationship for memory impairment by anticholinergic drugs. Compr. Psychiatry 30:135–138.CrossRefPubMedGoogle Scholar
  64. Mestelan, G., Crouzel, C., Cepeda, C., and Baron, J. C. (1982). Production of 18F-labelled 2-deoxy-2-fluoro-d-glucose and preliminary imaging results. Eur. J. Nucl. Med. 7:379–386.CrossRefPubMedGoogle Scholar
  65. Mies, G., Niebuhr, I., and Hossmann, K. A. (1981). Simultaneous measurement of blood flow and glucose metabolism by autoradiographic techniques. Stroke 12:581–588.PubMedGoogle Scholar
  66. Miller, R. D. (ed.). (1994). Anesthesia, 4th ed., 2 vols. Churchill Livingstone, New York.Google Scholar
  67. Mintun, M. A., Raichle, M. E., Martin, W. R., and Herscovitch, P. (1984). Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J. Nucl. Med. 25:177–187.PubMedGoogle Scholar
  68. Miyazawa, H., Osmont, A., Petit-Taboue, M. C., Tillet, I., Travere, J. M., Young, A. R., Barre, L., MacKenzie, E. T., and Baron, J. C. (1993). Determination of 18F-fluoro-2-deoxy-d-glucose rate constants in the anesthetized baboon brain with dynamic positron tomography. J. Neurosci. Methods 50:263–272.CrossRefPubMedGoogle Scholar
  69. Moerlein, S. M., and Perlmutter, J. S. (1991). Central serotonergic S2 binding in Papio anubis measured in vivo with N-omega-[18F]fluoroethylketanserin and PET. Neurosci. Lett. 123: 23–26.CrossRefPubMedGoogle Scholar
  70. Moerlein, S. M., and Perlmutter, J. S. (1992a). Specific binding of 3N-(2'-[18F]fluoroethyl) benperidol to primate cerebral dopaminergic D2 receptors demonstrated in vivo by PET. Neurosci. Lett. 148:97–100.Google Scholar
  71. Moerlein, S. M., and Perlmutter, J. S. (1992b). Binding of 5-(2'-[18F]fluoroethyl)flumazenil to central benzodiazepine receptors measured in living baboon by positron emission tomography. Eur. J. Pharmacol. 218:109–115.Google Scholar
  72. Moerlein, S. M., Banks, W. R., and Parkinson, D. (1992c). Production of fluorine-18 labeled (3-N-methyl)benperidol for PET investigation of cerebral dopaminergic receptor binding. Int. J. Rad. App. Instrum. A 43:913–917.Google Scholar
  73. Moerlein, S. M., Perlmutter, J. S., and Parkinson, D. (1993). Examination of two flourine-18 labeled benzodiazepine receptor antagonists as PET tracers. J. Cereb. Blood Flow Metab. 13(Suppl. 1):S284.Google Scholar
  74. Moerlein, S. M., Perlmutter, J. S., Welch, M. J., and Raichle, M. E. (1994). First-pass extraction fraction of iodine-123 labeled perfusion tracers in living primate brain. Nucl. Med. Biol. 21:847–855.CrossRefPubMedGoogle Scholar
  75. Moerlein, S. M., Perlmutter, J. S., and Welch, M. J. (1995). Specific, reversible binding of [18F]benperidol to baboon D2 receptors: PET evaluation of an improved 18F-labeled ligand. Nucl. Med. Biol. 22:809–815.CrossRefPubMedGoogle Scholar
  76. Moerlein, S. M., Perlmutter, J. S., Cutler, P. D., and Welch, M. J. (1997a). Radiation dosimetry of [18F](N-methyl) benperidol as determined by whole-body PET imaging of primates. Nucl. Med. Biol. 24:311–318.Google Scholar
  77. Moerlein, S. M., Perlmutter, J. S., Markham, J., and Welch, M. J. (1997b). In vivo kinetics of [18F](N-methyl)benperidol: A novel PET tracer for assessment of dopaminergic D2-like receptor binding. J. Cereb. Blood Flow Metab. 17:833–845.Google Scholar
  78. Moerlein, S. M., Bellamy, J., Do, T., Le, T., Welch, M. J., and Perlmutter, J. S. (2001a). PET imaging of the serotonin S3 antagonist [C-11]ondansetron in living baboon brain. Soc. Neurosci. Abstr. 27:2131, abstract no. 806.10.Google Scholar
  79. Moerlein, S. M., Welch, M. J., and Perlmutter, J. S. (2001b). Synthesis and evaluation in primates of (N-[11C]methyl) benperidol as a PET tracer of cerebral D2 receptor binding. J. Labelled Comp. Radiopharm. 44(Suppl. 1):S213–S215.Google Scholar
  80. Naumann, M., Pirker, W., Reiners, K., Lange, K. W., Becker, G., and Brucke, T. (1998). Imaging the pre- and postsynaptic side of striatal dopaminergic synapses in idiopathic cervical dystonia: A SPECT study using [123I] epidepride and [123I] beta-CIT. Mov. Disord. 13:319–323.CrossRefPubMedGoogle Scholar
  81. Nehls, D. G., Park, C. K., MacCormack, A. G., and McCulloch, J. (1990). The effects of N-methyl-d-aspartate receptor blockade with MK-801 upon the relationship between cerebral blood flow and glucose utilisation. Brain Res. 511:271–279.CrossRefPubMedGoogle Scholar
  82. Neumeyer, J. L., Lal, S., and Baldessarini, R. J. (1981). Historical highlights of the chemistry, pharmacology, and early clinical uses of apomorphine. In: Gessa, G. L., and Corsini, G. U. (eds.), Apomorphine and Other Dopaminomimetics. Raven Press, New York, pp. 1–17.Google Scholar
  83. Orzi, F., Morelli, M., Fieschi, C., and Pontieri, F. E. (1993). Metabolic mapping of the pharmacological and toxicological effects of dopaminergic drugs in experimental animals. Cerebrovasc. Brain Metab. Rev. 5:95–121.PubMedGoogle Scholar
  84. Parkinson Study Group. (2000). Pramipexole vs. levodopa as initial treatment for Parkinson disease: A randomized controlled trial. JAMA 284:1931–1938.CrossRefGoogle Scholar
  85. Perlmutter, J. S. (1993). New techniques in neuroimaging: When are pretty pictures clinically useful? Curr. Opin. Neurol. 6:889–890.CrossRefPubMedGoogle Scholar
  86. Perlmutter, J. S. (1995a). Magnetic resonance imaging and positron emission tomography investigations of Parkinson’s disease. In: Koller, W. C., and Paulson, G. (eds.), Therapy of Parkinson’s Disease, 2nd edition. Marcel Dekker, New York, pp. 91–107.Google Scholar
  87. Perlmutter, J. S. (1995b). Positron emission tomography evaluation of dopaminergic pathways. Clin. Neuropharmacol. 18(Suppl. 1):S188–S194.Google Scholar
  88. Perlmutter, J. S., and Moerlein, S. M. (1999). PET measurements of dopaminergic pathways in the brain. Q. J. Nucl. Med. 43:140–154.PubMedGoogle Scholar
  89. Perlmutter, J. S., Larson, K. B., Raichle, M. E., Markham, J., Mintun, M. A., Kilbourn, M. R., and Welch, M. J. (1986). Strategies for in vivo measurement of receptor binding using positron emission tomography. J. Cereb. Blood Flow Metab. 6:154–169.PubMedGoogle Scholar
  90. Perlmutter, J. S., Kilbourn, M. R., Raichle, M. E., and Welch, M. J (1987a). MPTP-induced up-regulation of in vivo dopaminergic radioligand-receptor binding in humans. Neurology 37:1575–1579.Google Scholar
  91. Perlmutter, J. S., Powers, W. J., Herscovitch, P., Fox, P.T., and Raichle, M.E. (1987b). Regional asymmetries of cerebral blood flow, blood volume, and oxygen utilization and extraction in normal subjects. J. Cereb. Blood Flow Metab. 7:64–67.Google Scholar
  92. Perlmutter, J. S., Kilbourn, M.R., Welch, M.J., and Raichle, M.E. (1989). Non-steady-state measurement of in vivo receptor binding with positron emission tomography: “Dose-response” analysis. J. Neurosci. 9:2344–2352.PubMedGoogle Scholar
  93. Perlmutter, J. S., Lich, L. L., Margenau, W., and Buchholz, S. (1991a). PET measured evoked cerebral blood flow responses in an awake monkey. J. Cereb. Blood Flow Metab. 11: 229–235.Google Scholar
  94. Perlmutter, J. S., Moerlein, S. M., Hwuang, D.- R., and Todd, R. D. (1991b). Non-steady-state measurement of in vivo radioligand binding with positron emission tomography: Specificity analysis and comparison with in vitro binding. J. Neurosci. 11:1381–1389.Google Scholar
  95. Perlmutter, J. S., Rowe, C. C., and Lich, L. L. (1993). In vivo pharmacological activation of dopaminergic pathways in primates studied with PET. J. Cereb. Blood Flow Metab. 13 (Suppl. 1):S286.Google Scholar
  96. Perlmutter, J. S., Stambuk, M. K., Markham, J., Black, K. J., McGee-Minnich, L., Jankovic, J., and Moerlein, S. M. (1997a). Decreased [18F]spiperone binding in putamen in idiopathic focal dystonia. J. Neurosci. 17:843–850.Google Scholar
  97. Perlmutter, J. S., Tempel, L. W., Black, K. J., Parkinson, D., and Todd, R. D. (1997b). MPTP induces dystonia and parkinsonism. Clues to the pathophysiology of dystonia. Neurology 49:1432–1438.Google Scholar
  98. Perlmutter, J. S., Moerlein, S. M., and Welch, M. J. (2001). Imaging studies of [C-11](N-methyl)benperidol (NMB) as a D2 receptor-binding PET tracer. Soc. Neurosci. Abs. 27:976, abstract no. 373.3.Google Scholar
  99. Perman, W. H., Gado, M. H., Larson, K. B., and Perlmutter, J. S. (1992). Simultaneous MR acquisition of arterial and brain signal-time curves. Magn. Reson. Med. 28:74–83.CrossRefPubMedGoogle Scholar
  100. Perman, W. H., el-Ghazzawy, O., Gado, M. H., Larson, K. B., and Perlmutter, J. S. (1993). A half-Fourier gradient echo technique for dynamic MR imaging. Magn. Reson. Imaging 11: 357–366.CrossRefPubMedGoogle Scholar
  101. Piercey, M. F., Camacho-Ochoa, M., and Smith, M. W. (1995). Functional roles for dopamine-receptor subtypes. Clin. Neuropharmacol. 18(Suppl. 1):S34–S42.Google Scholar
  102. Pizzolato, G., Soncrant, T. T., Larson, D. M., and Rapoport, S. I. (1987). Stimulatory effect of the D2 antagonist sulpiride on glucose utilization on dopaminergic regions of rat brain. J. Neurochem. 49:631–638.CrossRefPubMedGoogle Scholar
  103. Raichle, M. E., Martin, W. P., Herscovitch, P., Mintun, M. A., and Markham, J. (1983). Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J. Nucl. Med. 24:790–798.PubMedGoogle Scholar
  104. Raichle, M. E., Mintun, M. A., Shertz, L. D., Fusselman, M. J., and Miezen, F. (1991). The influence of anatomical variability on the functional brain mapping with PET: A study of intrasubject versus intersubject averaging. J. Cereb. Blood Flow Metab. 11(Suppl. 2):S364.Google Scholar
  105. Schwartz, W. J., Smith, C. B., Davidsen, L., Savaki, H., Sokoloff, L., Mata, M., Fink, D. J., and Gainer, H. (1979). Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205:723–725.CrossRefPubMedGoogle Scholar
  106. Sharkey, J., McBean, D. E., and Kelly, P. A. (1991). Acute cocaine administration: Effects on local cerebral blood flow and metabolic demand in the rat. Brain Res. 548:310–314.CrossRefPubMedGoogle Scholar
  107. Snyder, A. Z. (1996). Difference image versus ratio image error function forms in PET-PET realignment. In: Myers, R., Cunningham, V. J., Bailey, D. L., and Jones, T. (eds.), Quantification of Brain Function Using PET. Academic Press, San Diego, California, pp. 131–137.CrossRefGoogle Scholar
  108. Sossi, V., de la Fuente-Fernandez, R., Holden, J. E., Doudet, D. J., McKenzie, J., Stoessl, A. J., and Ruth, T. J. (2002). Increase in dopamine turnover occurs early in Parkinson's disease: Evidence from a new modeling approach to PET 18F-fluorodopa data. J. Cereb. Blood Flow Metab. 22:232–239.CrossRefPubMedGoogle Scholar
  109. Tewson, T. J., Raichle, M. E., and Welch, M. J. (1980). Preliminary studies with [18F]haloperidol: A radioligand for in vivo studies of the dopamine receptors. Brain Res. 192:291–295.CrossRefPubMedGoogle Scholar
  110. Todd, R. D., and Perlmutter, J. S. (1998). Mutational and biochemical analysis of dopamine in dystonia: Evidence for decreased dopamine D2 receptor inhibition. Mol. Neurobiol. 16: 135–147.CrossRefPubMedGoogle Scholar
  111. Todd, R. D., Carl, J., Harmon, S., O’Malley, K. L., and Perlmutter, J. S. (1996). Dynamic changes in striatal dopamine D2 and D3 receptor protein and mRNA in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) denervation in baboons. J. Neurosci. 16:7776–7782.PubMedGoogle Scholar
  112. Trugman, J. M. (1995). D1/D2 actions of dopaminergic drugs studied with [14C]-2-deoxyglucose autoradiography. Prog. Neuropsychopharmacol. Biol. Psychiatry 19:795–810.CrossRefPubMedGoogle Scholar
  113. Trugman, J. M., and James, C. L. (1992). Rapid development of dopaminergic supersensitivity in reserpine-treated rats demonstrated with 14C-2-deoxyglucose autoradiography. J. Neurosci. 12:2875–2879.PubMedGoogle Scholar
  114. Trugman, J. M., and Wooten, G. F. (1986). The effects of l-DOPA on regional cerebral glucose utilization in rats with unilateral lesions of the substantia nigra. Brain Res. 379:264–274.CrossRefPubMedGoogle Scholar
  115. Trugman, J. M., James, C. L., and Wooten, G. F. (1991). D1/D2 dopamine receptor stimulation by l-DOPA. A [14C]-2-deoxyglucose autoradiographic study. Brain 114:1429–1440.CrossRefPubMedGoogle Scholar
  116. Ueki, M., Mies, G., and Hossmann, K. A. (1992). Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol. Scand. 36:318–322.CrossRefPubMedGoogle Scholar
  117. Viergever, M. A., Maintz, J. B. A., Stokking, R., van den Elsen, P. A., and Zuiderveld, K. J. (1995). Matching and integrated display of brain images from multiple modalities. In: Loew, M. H. (ed.), Medical Imaging. Image Processing, vol. 2434. SPIE, Bellingham, WA, pp. 2–13.Google Scholar
  118. Vitek, J. L., and Bakay, R. A. E. (1997). The role of pallidotomy in Parkinson’s disease and dystonia. Curr. Opin. Neurol. 10:332–339.CrossRefPubMedGoogle Scholar
  119. Welch, M. J., Katzenellenbogen, J. A., Mathias, C. J., Brodack, J. W., Carlson, K. E., Chi, D. Y., Dence, C. S., Kilbourn, M. R., Perlmutter, J. S., Raichle, M. E., et al. (1988). N-(3-[18F]fluoropropyl)-spiperone: The preferred 18F labeled spiperone analog for positron emission tomographic studies of the dopamine receptor. Int. J. Rad. Appl. Instrum. B 15:83–97.PubMedGoogle Scholar
  120. Woods, R. P., Grafton, S. T., Watson, J. D., Sicotte, N. L., and Mazziotta, J. C. (1998). Automated image registration: II. Intersubject validation of linear and nonlinear models. J. Comput. Assist. Tomogr. 22(Suppl. 1):153–165.CrossRefPubMedGoogle Scholar
  121. Wooten, G. F., and Trugman, J. M. (1989). The dopamine motor system. Mov. Disord. 4 (Suppl. 1):S38–S47.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kevin J. Black
    • 1
    • 2
    • 3
    • 4
    • 7
  • Tamara Hershey
    • 1
    • 2
    • 7
  • Stephen M. Moerlein
    • 3
    • 5
  • Joel S. Perlmutter
    • 2
    • 3
    • 4
    • 6
    • 7
  1. 1.Departments of PsychiatryWashington University School of MedicineSt. Louis
  2. 2.Departments of Neurology and Neurological SurgeryWashington University School of MedicineSt. Louis
  3. 3.Departments of RadiologyWashington University School of MedicineSt. Louis
  4. 4.Departments of Anatomy and NeurobiologyWashington University School of MedicineSt. Louis
  5. 5.Departments of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. Louis
  6. 6.Departments of Program in Physical TherapyWashington University School of MedicineSt. Louis
  7. 7.Departments of APDA Advanced Research Center for Parkinson DiseaseWashington University School of MedicineSt. Louis

Personalised recommendations