Baboon Model for Ingestive Behaviors

  • John R. Blair-West
  • Derek A. Denton
  • Robert E. Shade
  • Richard S. Weisinger
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

There is a vast literature from research with rodents and ungulates on discovery and detailed definition of brain mechanisms and areas that may be involved in the regulation of food, water, and salt intakes, as well as specific appetites for certain minerals, vitamins, and other nutrients. These nonprimate models have led to speculations on the regulatory mechanisms in humans. Some of these speculations and ensuing hypotheses have been examined by non-invasive and opportunistic studies in human subjects. These include disorders of ingestion and appetites arising in a variety of clinical and subclinical situations such as stress, anorexias, obesity, high blood pressure, pregnancy, and aging. However, many experimental designs required to test these hypotheses are not practical with human subjects, and fundamental differences in mechanisms that regulate ingestive behaviors may exist between primates and other mammals. Therefore, our group has established a nonhuman primate model for research on such mechanisms.


Cerebral Spinal Fluid Sodium Intake Salt Intake Corticotrophin Release Factor Daily Food Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barnwell, G. M., Dollahite, J., and Mitchell, D. S. (1986). Salt taste preference in baboons. Physiol. Behav. 37:279–284.CrossRefPubMedGoogle Scholar
  2. Blaine, E. H., Covelli, M. D., Denton, D. A., Nelson, J. F., and Shulkes, A. A. (1975). The role of ACTH and adrenal glucocorticoids in salt appetite in wild rabbits [Oryctolagus cuniculus (L)]. Endocrinology 97:793–801.CrossRefPubMedGoogle Scholar
  3. Blair-West, J. R., Burns, P., Denton, D. A., Ferraro, T., McBurnie, M. I., Tarjan, E., and Weisinger, R. S. (1994). Thirst induced by increasing brain sodium concentration is mediated by brain angiotensin. Brain Res. 637:335–338.CrossRefPubMedGoogle Scholar
  4. Blair-West, J. R., Denton, D. A., McBurnie, M., Tarjan, E., and Weisinger, R. S. (1995). Influence of adrenal steroid hormones on sodium appetite of Balb/c mice. Appetite 24:11–24.CrossRefPubMedGoogle Scholar
  5. Blair-West, J. R., Carey, K. D., Denton, D. A., Weisinger, R. S., and Shade, R. E. (1998). Evidence that brain angiotensin II is involved in both thirst and sodium appetite in baboons. Am. J. Physiol. 275:R1639–R1646.PubMedGoogle Scholar
  6. Blair-West, J. R., Carey, K. D., Denton, D. A., Madden, L. J., Weisinger, R. S., and Shade, R. E. (2001). Possible contribution of brain angiotensin III to ingestive behaviors in baboons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:R1633–R1636.PubMedGoogle Scholar
  7. Byrd, L. D. (1979). A tethering system for direct measurement of cardiovascular function in the caged baboon. Am. J. Physiol. 236:H775–H779.PubMedGoogle Scholar
  8. Denton, D. A., Eichberg, J. W., Shade, R., and Weisinger, R. S. (1993). Sodium appetite in response to sodium deficiency in baboons. Am. J. Physiol. 264:R539–R543.PubMedGoogle Scholar
  9. Denton, D. A., Blair-West, J. R., McBurnie, M. I., Miller, J. A., Weisinger, R. S., and Williams, R. M. (1999). Effect of adrenocorticotrophic hormone on sodium appetite in mice. Am. J. Physiol. 277:R1033–R1040.PubMedGoogle Scholar
  10. Epstein, A. N. (1982). Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides 3:493–494.CrossRefPubMedGoogle Scholar
  11. Epstein, A. N. (1991). Neurohormonal control of salt intake in the rat. Brain Res. Bull. 27: 315–320.CrossRefPubMedGoogle Scholar
  12. Fitzsimons, J. T. (1998). Angiotensin, thirst, and sodium appetite. Physiol. Rev. 78:583–686.PubMedGoogle Scholar
  13. Glowa, J. R., and Gold, P. W. (1991). Corticotropin releasing hormone produces profound anorexigenic effects in the rhesus monkey. Neuropeptides 18:55–61.CrossRefPubMedGoogle Scholar
  14. Goodall, J. (1986). The Chimpanzees of Gombe: Patterns of Behavior. Belknap Press of Harvard University, Cambridge, MA.Google Scholar
  15. Hofmann, F. G., Knobil, E., and Greep, R. O. (1954). Effects of saline on the adrenalectomized rhesus monkey. Am. J. Physiol. 178:361–366.PubMedGoogle Scholar
  16. Johnson, A. K., and Thunhorst, R. L. (1997). The neuroendocrinology of thirst and salt appetite: Visceral sensory signals and mechanisms of central integration. Front. Neuroendocrinol. 18:292–353.CrossRefPubMedGoogle Scholar
  17. Kalin, N. H., Shelton, S. E., Kraemer, G. W., and McKinney, W. T. (1983). Corticotropin-releasing factor administered intraventricularly to rhesus monkeys. Peptides 4:217–220.CrossRefPubMedGoogle Scholar
  18. Kleyman, T. R., and Cragoe, E. J., Jr. (1988). Amiloride and its analogs as tools in the study of ion transport. J. Membr. Biol. 105:1–21.CrossRefPubMedGoogle Scholar
  19. McMurray, T. M., and Snowdon, C. T. (1997). Sodium preference and responses to sodium deficiency in rhesus monkeys. Physiol. Psychol. 5:477–482.Google Scholar
  20. Migaud, M., Durieux, C., Viereck, J., Soroca-Lucas, E., Fournie-Zaluski, M. C., and Roques, B. P. (1996). The in vivo metabolism of cholecystokinin (CCK-8) is essentially ensured by aminopeptidase A. Peptides 17:601–607.CrossRefPubMedGoogle Scholar
  21. Reaux, A., Fourie-Zaluski, M. C., David, C., Zini, S., Roques, B.P., Corval, P., and Llorens-Cortes, C. (1999). Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc. Natl. Acad. Sci. USA 96:13415–13420.Google Scholar
  22. Rowland, N. E., and Fregly, M. J. (1988). Sodium appetite: Species and strain differences and role of renin-angiotensin-aldosterone system. Appetite 11:143–178.CrossRefPubMedGoogle Scholar
  23. Sakai, R. R., McEwen, B. S., Fluharty, S. J., and Ma, L. Y. (2000). The amygdala: Site of genomic and nongenomic arousal of aldosterone-induced sodium intake. Kidney Int. 57:1337–1345.CrossRefPubMedGoogle Scholar
  24. Schaller, G. B. (1963). The Mountain Gorilla: Ecology and Behavior. University of Chicago Press, Chicago, IL.Google Scholar
  25. Schulkin, J. (1991). Sodium Hunger: The Search for a Salty Taste. Cambridge University Press, Cambridge, UK.Google Scholar
  26. Schulkin, J., Leibman, D., Ehrman, R. N., Norton, N. W., and Ternes, J. W. (1984). Salt hunger in the rhesus monkey. Behav. Neurosci. 98:753–756.CrossRefPubMedGoogle Scholar
  27. Shade, R. E., and Blair-West, J. R. (1997). The role of angiotensin in sodium appetite and thirst in baboons. Proc. Int. Congr. Physiol. Sci., 33rd, St. Petersburg, P.L. 099.10.Google Scholar
  28. Shade, R. E., Blair-West, J. R., Carey, K. D., Madden, L. J., Weisinger, R. S., Rivier, J. E., Vale, W. W., and Denton, D. A. (2002a). Ingestive responses to administration of stress hormones in baboons. Am J. Physiol. Regul. Integr. Comp. Physiol. 282:R10–R18.Google Scholar
  29. Shade, R. E., Blair-West, J. R., Carey, K. D., Madden, L. J., Weisinger, R. S., and Denton, D. A. (2002b). Synergy between angiotensin and aldosterone in evoking sodium appetite in baboons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283:R1070–R1078.Google Scholar
  30. Shelat, S. G., Fluharty, S. J., and Flanagan-Cato, L. M. (1998). Adrenal steroid regulation of central angiotensin II receptor subtypes and oxytocin receptors in rat brain. Brain Res. 807:135–146.CrossRefPubMedGoogle Scholar
  31. Sinnayah, P., Blair-West, J. R., McBurnie, M. I., McKinley, M. J., Oldfield, B. J., Rivier, J., Vale, W. W., Walker, L. L., Weisinger, R. S., and Denton, D. A. (2003). The effect of urocortin on ingestive behaviours and brain Fos immunoreactivity in mice. Eur. J. Neurosci. 18:373–382.CrossRefPubMedGoogle Scholar
  32. Smith, M. A., Kling, M. A., Whitfield, H. J., Brandt, H. A., Demitrack, M. A., Geracioti, T. D., Chrousos, G. P., and Gold, P. W. (1989). Corticotropin-releasing hormone: From endocrinology to psychobiology. Horm. Res. 31:66–71.CrossRefPubMedGoogle Scholar
  33. Spina, M., Merlo-Pich, E., Chan, R. K., Basso, A. M., Rivier, J., Vale, W., and Koob, G. F. (1996). Appetite-suppressing effects of urocortin, a CSF-related neuropeptide. Science 273: 1561–1564.CrossRefPubMedGoogle Scholar
  34. Stricker, E. M., and Verbalis, J. G. (1996). Central inhibition of salt appetite by oxytocin in rats. Regul. Pept. 66:83–85.CrossRefPubMedGoogle Scholar
  35. Vale, W., Rivier, C., Brown, M. R., Spiess, J., Koob, G., Swanson, L., Bilezikjian, L., Bloom, F., and Rivier, J. (1983). Chemical and biological characterization of corticotropin releasing factor. Recent Prog. Horm. Res. 39:245–270.PubMedGoogle Scholar
  36. Vaughan, J., Donaldson, C., Bittencourt, J., Perrin, M. H., Lewis, K., Sutton, S., Chan, R., Turnbull, A. V., Lovejoy, D., Rivier, C., Rivier, J., Sawchenko, P., and Vale, W. (1995). Urocortin, a mammalian neuropeptide related to fish urotensin I and corticotropin-releasing factor. Nature 378:287–292.CrossRefPubMedGoogle Scholar
  37. Verbalis, J. G., Blackburn, R. E., Hoffman, G. E., and Stricker, E. M. (1995). Establishing behavioral and physiological functions of central oxytocin: Insights from studies of oxytocin and ingestive behaviors. Adv. Exp. Med. Biol. 395:209–225.PubMedGoogle Scholar
  38. Weisinger, R. S., Denton, D. A., McKinley, M. J., and Nelson, J. F. (1978). ACTH induced sodium appetite in the rat. Pharmacol. Biochem. Behav. 8:339–342.CrossRefPubMedGoogle Scholar
  39. Weisinger, R. S., Coghlan, J. P., Denton, D. A., Fan, J. S., Hatzikostas, S., McKinley, M. J., Nelson, J. F., and Scoggins, B. A. (1980). ACTH-elicited sodium appetite in sheep. Am. J. Physiol. Endocrinol. Metab. 239:E45–E50.Google Scholar
  40. Weisinger, R. S., Blair-West, J. R., Burns, P., Denton, D. A., McKinley, M. J., Purcell, B., Vale, W., Rivier, J., and Sunagawa, K. (2000). The inhibitory effect of hormones associated with stress on Na appetite of sheep. Proc. Natl. Acad. Sci. USA 97:2922–2927.Google Scholar
  41. Zini, S., Fournie-Zaluski, M. C., Chauvel, E., Roques, B. P., Corvol, P., and Llorens-Cortes, C. (1996). Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: Predominant role of angiotensin III in the control of vasopressin release. Proc. Natl. Acad. Sci. USA 93:11968–11973.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John R. Blair-West
    • 1
    • 2
    • 3
  • Derek A. Denton
    • 1
    • 3
  • Robert E. Shade
    • 1
    • 2
  • Richard S. Weisinger
    • 4
  1. 1.Department of Physiology and MedicineSouthwest Foundation for Biomedical ResearchSan Antonio
  2. 2.Southwest National Primate Research Center, Southwest Foundation for Biomedical ResearchSan Antonio
  3. 3.Department of PhysiologyUniversity of MelbourneAustralia
  4. 4.School of Psychological Science, LaTrobe UniversityAustralia

Personalised recommendations