Advertisement

Baboon Model for Infant Nutrition

  • Glen E. Mott
  • Douglas S. Lewis
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Although there are only a limited number of nutritional studies performed with infant baboons, they are excellent models to investigate the influence of nutrition on early developmental processes that significantly impact human infants. By comparison with most mammalian species, newborn baboons are highly similar to human infants, although baboon infants are somewhat more developmentally mature at birth (indicated by teeth eruption and motor skills) by comparison with human babies. The infant baboon thrives on commercial human infant formulas and adapts readily to a peer social environment or can be raised in isolation by an animal handler.

Keywords

Bile Acid Protein Energy Malnutrition Serum Cholesterol Concentration Infant Nutrition Early Nutrition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bergmann, K. E., Bergmann, R. L., Von Kries, R., Bohm, O., Richter, R., Dudenhausen, J. W., and Wahn, U. (2003). Early determinants of childhood overweight and adiposity in a birth cohort study: Role of breast-feeding. Int. J. Obes. Relat. Metab. Disord. 27:162–172.CrossRefPubMedGoogle Scholar
  2. Coward, D. G., and Whitehead, R. G. (1972). Experimental protein-energy malnutrition in baby baboons. Attempts to reproduce the pathological feature of kwashiorkor as seen in Uganda. Br. J. Nutr. 28:223–237.CrossRefPubMedGoogle Scholar
  3. Gillman, M. W., Rifas-Shiman, S. L., Camargo, C.A., Jr., Berkey, C. S., Frazier, A. L., Rockett, H. R., Field, A. E. and Colditz, G. A. (2001). Risk of overweight among adolescents who were breastfed as infants. J. Am. Med. Assoc. 285:2461–2467.CrossRefGoogle Scholar
  4. Greiner, R. C., Winter, J., Nathanielsz, P. W., and Brenna, J. T. (1997). Brain docosahexaenoate accretion in fetal baboons: Bioequivalence of dietary α-linolenic and docosahexaenoic acids. Pediatr. Res. 42:826–834.CrossRefPubMedGoogle Scholar
  5. Hediger, M. L., Overpeck, M. D., Ruan, W. J., and Troendle, J. F. (2000). Early infant feeding and growth status of US-born infants and children aged 4–71 mo: Analyses from the third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Clin. Nutr. 72: 159–167.PubMedGoogle Scholar
  6. Hediger, M. L., Overpeck, M. D., Kuczmarski, R. J., and Ruan, W. J. (2001). Association between infant breastfeeding and overweight in young children. J. Am. Med. Assoc. 285:2453–2460.CrossRefGoogle Scholar
  7. Hirsch, J. (1976). The adipose-cell hypothesis. N. Engl. J. Med. 295:389–390.CrossRefPubMedGoogle Scholar
  8. Jackson, E. M., Lewis, D. S., McMahan, C. A., and Mott, G. E. (1993). Preweaning diet affects bile lipid composition and bile acid kinetics in infant baboons. J. Nutr. 123:1471–1479.PubMedGoogle Scholar
  9. Kimm, S. Y., and Obarzanek, E. (2002). Childhood obesity: A new pandemic of the new millennium. Pediatrics 110:1003–1007.CrossRefPubMedGoogle Scholar
  10. Lewis, D. S. (1996). Infant feeding and body composition in later life. In: Bindels, J. G., Goedhart, A., and Visser, H. K. A. (eds.), Recent Developments in Infant Nutrition, Chapter 9. Kluwer Academic Publishers, Dordrecht, pp. 128–147.Google Scholar
  11. Lewis, D. S., and Soderstrom, P. G. (1993a). In vivo and in vitro development of visceral adipose tissue in a nonhuman primate (Papio species). Metabolism 42:1277–1283.Google Scholar
  12. Lewis, D. S., and Soderstrom, P. G. (1993b). Enhanced differentiation potential in omental preadipocytes from pre-adolescent baboons overfed as infants. FASEB J. 7:A388.Google Scholar
  13. Lewis, D. S., Bertrand, H. A., Masoro, E. J., McGill, H. C., Jr., Carey, K. D., and McMahan, C. A. (1983). Preweaning nutrition and fat development in baboons. J. Nutr. 113:2253–2259.PubMedGoogle Scholar
  14. Lewis, D. S., Bertrand, H. A., Masoro, E. J., McGill, H. C., Jr., Carey, K. D., and McMahan, C. A. (1984). Effect of interaction of gender and energy intake on lean body mass and fat mass gain in infant baboons. J. Nutr. 114:2021–2026.PubMedGoogle Scholar
  15. Lewis, D. S., Bertrand, H. A., McMahan, C. A., McGill, H. C., Jr., Carey, K. D., and Masoro, E. J. (1986). Preweaning food intake influences the adiposity of young adult baboons. J. Clin. Invest. 78:899–905.CrossRefPubMedGoogle Scholar
  16. Lewis, D. S., Mott, G. E., McMahan, C. A., Masoro, E. J., Carey, K. D., and McGill, H. C., Jr. (1988). Deferred effects of preweaning diet on atherosclerosis in adolescent baboons. Arteriosclerosis 8:274–280.PubMedGoogle Scholar
  17. Lewis, D. S., Bertrand, H. A., McMahan, C. A., McGill, H. C., Jr., Carey, K. D. and Masoro, E. J. (1989). Influence of preweaning food intake on body composition of young adult baboons. Am. J. Physiol. 257:R1128–R1135.PubMedGoogle Scholar
  18. Lewis, D. S., Coelho, A. M., Jr., and Jackson, E. M. (1991). Maternal weight and sire group, not caloric intake, influence adipocyte volume in infant female baboons. Pediatr. Res. 30: 534–540.CrossRefPubMedGoogle Scholar
  19. Lewis, D. S., Jackson, E. M., and Mott G. E. (1992). Effect of energy intake on postprandial plasma hormones and triglyceride concentrations in infant female baboons (Papio species). J. Clin. Endrocrinol. Metab. 74:920–926.CrossRefGoogle Scholar
  20. Lewis, D. S., McMahan, C. A., and Mott, G. E. (1993). Breastfeeding and formula feeding affect differently plasma thyroid hormone concentrations in infant baboons. Biol. Neonate 63: 327–335.CrossRefPubMedGoogle Scholar
  21. Lewis, D. S., Jackson, E. M., and Mott, G. E. (1995). Triiodothyronine accelerates maturation of bile acid metabolism in infant baboons. Am. J. Physiol. 268:E889–E896.PubMedGoogle Scholar
  22. Liese, A. D., Hirsch, T., von Mutius, E., Keil, U., Leupold, W., and Weiland, S. K. (2001). Inverse association of overweight and breast feeding in 9- to 10-y-old children in Germany. Int. J. Obes. Relat. Metab. Disord. 25:1644–1650.CrossRefPubMedGoogle Scholar
  23. Lilburne, A. M., Oates, R. K., Thompson, S., and Tong, L. (1988). Infant feeding in Sydney: a survey of mothers who bottle feed. Aust. Paediatr. J. 24:49–54.PubMedGoogle Scholar
  24. McGill, H. C., Jr., Mott, G. E., Lewis, D. S., McMahan, C. A., and Jackson, E. M. (1996). Early determinants of adult metabolic regulation: Effects of infant nutrition on adult lipid and lipoprotein metabolism. Nutr. Rev. 54:S31–S40.CrossRefPubMedGoogle Scholar
  25. Mott, G. E., McMahan, C. A., and McGill, H. C., Jr. (1978). Diet and sire effects on serum cholesterol and cholesterol absorption in infant baboons (Papio cynocephalus). Circ. Res. 43: 364–371.PubMedGoogle Scholar
  26. Mott, G. E., Jackson, E. M., McMahan, C. A., Farley, C. M., and McGill, H. C., Jr. (1985). Cholesterol metabolism in juvenile baboons. Influence of infant and juvenile diets. Arteriosclerosis 5:347–354.PubMedGoogle Scholar
  27. Mott, G. E., Jackson, E. M., McMahan, C. A., and McGill, H. C., Jr. (1990). Cholesterol metabolism in adult baboons is influenced by infant diet. J. Nutr. 120:243–251.PubMedGoogle Scholar
  28. Mott, G. E., Jackson, E. M., and McMahan, C. A. (1991). Bile composition of adult baboons is influenced by breast versus formula feeding. J. Pediatr. Gastroenterol. Nutr. 12:121–126.CrossRefPubMedGoogle Scholar
  29. Mott, G. E., Lewis, D. S., and McMahan, C. A. (1993a). Infant diet affects serum lipoprotein concentrations and cholesterol esterifying enzymes in baboons. J. Nutr. 123:155–163.Google Scholar
  30. Mott, G. E., DeLallo, L., Driscoll, D. M., McMahan, C. A., and Lewis, D. S. (1993b). Influence of breast and formula feeding on hepatic concentrations of apolipoprotein and low-density lipoprotein receptor mRNAs. Biochim. Biophys. Acta 1169:59–65.Google Scholar
  31. Mott, G. E., Jackson, E. M., DeLallo, L., Lewis, D. S., and McMahan, C. A. (1995). Differences in cholesterol metabolism in juvenile baboons are programmed by breast- versus formula-feeding. J. Lipid Res. 36:299–307.PubMedGoogle Scholar
  32. Mott, G. E., Lewis, D. S., Jackson, E. M., and McMahan, C. A. (1996). Preweaning diet programs postweaning plasma thyroxine concentrations in baboons. Proc. Soc. Exp. Biol. Med. 212: 342–348.Google Scholar
  33. Mott, G. E., Jackson, E. M., Klein, M. L., Shan, H., Pang, J., Wilson, W. K., McMahan, C. A. (2003). Programming of initial steps in bile acid synthesis by breast-feeding vs. formula-feeding in the baboon. Lipids 38:1213–1220.CrossRefGoogle Scholar
  34. Rolland-Cachera, M. F., Deheeger, M., Bellisle, F., Sempe, M., Guilloud-Bataille, M. Patois, E. (1984). Adiposity rebound in children: A simple indicator for predicting obesity. Am. J. Clin. Nutr. 39:129–135.PubMedGoogle Scholar
  35. Stabler, S. P., Morton, R. L., Winski, S. L., Allen, R. H., and White, C. W. (2000). Effects of parenteral cysteine and glutathione feeding in a baboon model of severe prematurity. Am. J. Clin. Nutr. 72:1548–1557.PubMedGoogle Scholar
  36. Su, H.-M., Corso, T. N., Nathanielsz, P. W., and Brenna, J. T. (1999). Linoleic acid in kinetics and conversion to arachidonic acid in the pregnant and fetal baboon. J. Lipid Res. 40:1304–1312.PubMedGoogle Scholar
  37. Wijendran, V., Lawrence, P., Diau, G.-Y., Boehm, G., Nathanielsz, P. W., and Brenna, J. T. (2002a). Significant utilization of dietary arachidonic acid is for brain adrenic acid in baboon neonates. J. Lipid Res. 43:762–767.Google Scholar
  38. Wijendran, V., Huang, M.-C., Diau, G.-Y., Boehm, G., Nathanielsz, P. W., and Brenna, J. T. (2002b). Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonic acid accretion in baboon neonates. Pediatr. Res. 51:265–272.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Glen E. Mott
    • 1
  • Douglas S. Lewis
    • 2
  1. 1.Department of PathologyUniversity of Texas Health Science CenterSan Antonio
  2. 2.Department of Human Nutrition and Food ScienceCalifornia State Polytechnic UniversityPomona

Personalised recommendations