Baboon Model for the Study of Nutritional Influences on Pregnancy

  • Peter W. Nathanielsz
  • Mark J. Nijland
  • Christian H. Nevill
  • Susan L. Jenkins
  • Gene B. Hubbard
  • Thomas J. McDonald
  • Natalia E. Schlabritz-Loutsevitch
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

The baboon has been used extensively as an experimental model to study female reproductive function and pregnancy-related physiology. To obtain a better understanding of mammalian biology, there is a critical need to synthesize information from both the systems and the reductionist experimental approaches. There is a wide range of animal models from rodents to nonhuman primates in which this synthesis can provide important information. The study of each model is important in its own right. When any physiological system or stage of pregnancy is studied in a particular animal model, it is necessary for the investigator to evaluate the consequences of species differences. This need to assess the validity of any extrapolation across species is especially true in relation to the studies of female reproduction and the physiology of pregnancy.


Nonhuman Primate Individual Cage Maternal Nutrition Placental Development Dominant Female 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antonow-Schlorke, I., Schwab, M., Li, C., and Nathanielsz, P. W. (2003). Glucocorticoid exposure at the dose used clinically alters cytoskeletal proteins and presynaptic terminals in the fetal baboon brain. J. Physiol. 547:117–123.CrossRefPubMedGoogle Scholar
  2. Baggia, S., Albrecht, E. D., and Pepe, G. J. (1990). Regulation of 11β-hydroxysteroid dehydrogenase activity in the baboon placenta by estrogen. Endocrinology 126:2742–2748.CrossRefPubMedGoogle Scholar
  3. Barker, D. J. P. (1998). Mothers, Babies and Health in Later Life, 2nd Edition. Churchill-Livingstone, London.Google Scholar
  4. Barrett, L., Gaynor, D., and Henzi, S. P. (2002). A dynamic interaction between aggression and grooming reciprocity among female chacma baboons. Anim. Behav. 63:1047–1053.CrossRefGoogle Scholar
  5. Bentley-Condit, V. K., and Smith, E. O. (1999). Female dominance and female social relationships among yellow baboons (Papio hamadryas cynocephalus). Am. J. Primatol. 47:321–334.CrossRefPubMedGoogle Scholar
  6. Bloomfield, F. H., van Zijl, P. L., Bauer, M. K., and Harding, J. E. (2002). A chronic low dose infusion of insulin-like growth factor I alters placental function but does not affect fetal growth. Reprod. Fertil. Dev. 14:393–400.CrossRefPubMedGoogle Scholar
  7. Bramblett, C. A. (1981). Dominance tabulation: Giving form to concepts. Behav. Brain Sci. 4:435–436.CrossRefGoogle Scholar
  8. Brawley, L., Itoh, S., Torrens, C., Barker, A., Bertram, C., Poston, L., and Hanson, M. (2003). Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr. Res. 54:83–90.CrossRefPubMedGoogle Scholar
  9. Cox, L. A., Nijland, M. J., Gilbert, J. S., Schlabritz-Loutsevitch, N., Hubbard, G. B., McDonald, T. J., Shade, R. E., and Nathanielsz, P.W. (2006a). Effect of 30 per cent maternal nutrient restriction from 0.16 to 0.5 gestation on fetal baboon kidney gene expression. J. Physiol. 572:67–85.Google Scholar
  10. Cox, L. A., Schlabritz-Loutsevitch, N., Hubbard, G. B., Nijland, M. J., McDonald, T. J., Nathanielsz, P. W. (2006b) Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale. J Physiol (Lond). 572:59–66.Google Scholar
  11. Crowe, C., Bennet, L., and Hanson, M. A. (1995). Blood pressure and cardiovascular reflex development in fetal sheep. Relation to hypoxaemia, weight, and blood glucose. Reprod. Fert. Dev. 7:553–558.CrossRefGoogle Scholar
  12. Daniel, S. S., James, L. S., MacCarter, G., Morishima, H. O., and Stark, R. I. (1992). Long-term acid-base measurements in the fetal and maternal baboon. Am. J. Obstet. Gynecol. 166: 707–712.PubMedGoogle Scholar
  13. Dawood, M. Y., Chellaram, R., and Khan-Dawood, F. S. (1997). Interleukin-1β inhibits in vitro pulsatile progesterone secretion and stimulates prostaglandin F2 α secretion by micro-retrodialyzed baboon corpus luteum. Horm. Metab. Res. 29:483–490.CrossRefPubMedGoogle Scholar
  14. Derks, J. B., Giussani, D. A., Jenkins, S. L., Wentworth, R. A., Visser, G. H. A., Padbury, J. F., and Nathanielsz, P. W. (1997). A comparative study of cardiovascular, endocrine and behavioural effects of betamethasone and dexamethasone administration to fetal sheep. J. Physiol. 499: 217–226.PubMedGoogle Scholar
  15. Ducsay, C. A., Hess, D. L., McClellan, M. C., and Novy, M. J. (1991). Endocrine and morphological maturation of the fetal and neonatal adrenal cortex in baboons. J. Clin. Endocrinol. Metab. 73:385–395.CrossRefPubMedGoogle Scholar
  16. Gardner, D. S., Jackson, A. A., and Langley-Evans, S. C. (1997). Maintenance of maternal diet-induced hypertension in the rat is dependent on glucocorticoids. Hypertension 30:1525–1530.PubMedGoogle Scholar
  17. Henson, M. C. (1998). Pregnancy maintenance and the regulation of placental progesterone biosynthesis in the baboon. Hum. Reprod. Update 4:389–405.CrossRefPubMedGoogle Scholar
  18. Hild-Petito, S., Verhage, H. G., and Fazleabas, A. T. (1992). Immunocytochemical localization of estrogen and progestin receptors in the baboon (Papio anubis) uterus during implantation and pregnancy. Endocrinology 130:2343–2353.CrossRefPubMedGoogle Scholar
  19. Khan-Dawood, F. S., Yang, J., Ozigi, A. A., and Dawood, M. Y. (1996). Immunocytochemical localization and expression of E-cadherin, β-cateni and plakoglobin in the baboon (Papio anubis) corpus luteum. Biol. Reprod. 55:246–253.CrossRefPubMedGoogle Scholar
  20. Knobil, E., and Neil, J. D. (eds.). (1998). Encyclopedia of Reproduction, Volume 4. Academic Press, New York.Google Scholar
  21. Koenen, S. V., Mecenas C. A., Smith, G. S., Jenkins, S., and Nathanielsz, P. W. (2002). Effects of maternal betamethasone administration on fetal and maternal blood pressure and heart rate in the baboon at 0.7 of gestation. Am. J. Obstet. Gynecol. 186:812–817.CrossRefPubMedGoogle Scholar
  22. Kumar, S., Brudney, A., Cheon, Y. P., Fazleabas, A. T., and Bagchi, I. C. (2003). Progesterone induces calcitonin expression in the baboon endometrium within the window of uterine receptivity. Biol. Reprod. 68:1318–1323.CrossRefPubMedGoogle Scholar
  23. Langley, S. C., and Jackson A. A. (1994). Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin. Sci. 86:217–222.PubMedGoogle Scholar
  24. Langley, S. C., Seakins, M., Grimble, R. F., and Jackson, A. A. (1994). The acute phase response of adult rats is altered by in utero exposure to maternal low protein diets. J. Nutr. 124:1588–1596.PubMedGoogle Scholar
  25. Martin, P., and Bateson, P. (1993). Measuring Behavior: An Introductory Guide, 2nd Ed. Cambridge University Press, Cambridge.Google Scholar
  26. McDonald, T. J., and Nathanielsz, P. W. (1991). Bilateral destruction of the fetal paraventricular nuclei prolongs gestation in sheep. Am. J. Obstet. Gynecol. 165:764–770.PubMedGoogle Scholar
  27. Morgan, M. A., Silavan, S. L., Randolph, M., Payne, G. G., Jr., Sheldon, R. E., Fishburne, J. I., Jr., Wentworth, R. A., and Nathanielsz, P. W. (1991). Effect of intravenous cocaine on uterine blood flow in the gravid baboon. Am. J. Obstet. Gynecol. 164:1021–1030.PubMedGoogle Scholar
  28. Musicki, B., Pepe, G. J., and Albrecht, E. D. (2003). Functional differentiation of the placental syncytiotrophoblast: Effect of estrogen on chorionic somatomammotropin expression during early primate pregnancy. J. Clin. Endocrinol. Metab. 88:4316–4323.CrossRefPubMedGoogle Scholar
  29. Nathanielsz, P. W. and Thornburg, K. L. (2003). Fetal programming: From gene to functional systems–an overview. J. Physiol. 547:3–4.Google Scholar
  30. Nathanielsz, P. W., Smith, G., and Wu, W. (2004). Topographical specialization of prostaglandin function in late pregnancy and at parturition in the baboon. Prostaglandins Leukot. Essent. Fatty Acids. 70:199–206.CrossRefPubMedGoogle Scholar
  31. Nijland, M. J., Schlabritz-Loutsevitch, N., Hubbard, G. B., Nathanielsz, P. W., and Cox, L. A. (2007). Nonhuman primate fetal kidney transcriptome analysis indicates mTOR is a central nutrient responsive pathway. J. Physiol. (Lond) 579: 643–656.CrossRefGoogle Scholar
  32. Ozaki, T., Nishina, H., Hanson, M. A., and Poston, L. (2001). Dietary restriction in pregnant rat causes gender-related hypertension and vascular dysfunction in offspring. J. Physiol. 530: 141–152.CrossRefPubMedGoogle Scholar
  33. Pepe, G. J., and Albrecht, E. D. (1987). Fetal regulation of transplacental cortisol-cortisone metabolism in the baboon. Endocrinology 120:2529–2533.CrossRefPubMedGoogle Scholar
  34. Post, D. G., Hausfater, G., and McCuskey, S. A. (1980). Feeding behavior of yellow baboons (Papio cynocephalus): Relationship to age, gender and dominance rank. Folia Primatol. (Basel) 34:170–195.CrossRefGoogle Scholar
  35. Rowell, T. E. (1966). Hierarchy in the organization of a captive baboon group. Anim. Behav. 14:430–443.CrossRefPubMedGoogle Scholar
  36. Schlabritz-Loutsevitch, N. E., Howell, K., Rice, K., Glover, E. J., Nevill, C. H., Jenkins, S. L., Cummins, L. B., Frost, P. A., McDonald, T. J., and Nathanielsz, P. W. (2004). Development of a system for individual feeding of baboons maintained in an outdoor group social environment. J. Med. Primatol. 33:117–126.CrossRefPubMedGoogle Scholar
  37. Schlabritz-Loutsevitch, N., Ballesteros, B., Dudley, C., Jenkins, S., Hubbard, G., Burton, G. J., and Nathanielsz, P. (2007a). Moderate maternal nutrient restriction, but not glucocorticoid administration, leads to placental morphological changes in the baboon (Papio sp.) Placenta. 28: 783–793.Google Scholar
  38. Schlabritz-Loutsevitch, N. E., Dudley, C. J., Gomez, J. J., Nevill, C. H., Smith, B. K., Jenkins, S. L., McDonald, T. J., Bartlett, T. Q., Nathanielsz, P. W., and Nijland, M. (2007b) Metabolic adjustments to moderate maternal nutrient restriction. Br. J. Nutr. 29:1–9Google Scholar
  39. Stammbach, E., and Kummer, H. (1982). Individual contributions to a dyadic interaction: An analysis of baboon grooming. Anim. Behav. 30:964–971.CrossRefGoogle Scholar
  40. Strakova, Z., Szmidt, M., Srisuparp, S., and Fazleabas, A. T. (2003). Inhibition of matrix metalloproteinases prevents the synthesis of insulin-like growth factor binding protein-1 during decidualization in the baboon. Endocrinology 144:5339–5346.CrossRefPubMedGoogle Scholar
  41. Unno, N., Wong, C. H., Jenkins, S. L., Wentworth, R. A., Ding, X. Y., Li, C., Robertson, S. S., Smotherman, W. P., and Nathanielsz, P. W. (1999). Blood pressure and heart rate in the ovine fetus: Ontogenic changes and effects of fetal adrenalectomy. Am. J. Physiol. 276:H248–H256.PubMedGoogle Scholar
  42. Vonnahme, K. A., Hess, B. W., Hansen, T. R., McCormick, R. J., Rule, D. C., Moss, G. E., Murdoch, W. J., Nijland, M. J., Skinner, D. C., Nathanielsz, P. W., and Ford, S. P. (2003). Maternal undernutrition from early- to mid-gestation leads to growth retardation, cardiac ventricular hypertrophy, and increased liver weight in the fetal sheep. Biol. Reprod. 69:133–140.CrossRefPubMedGoogle Scholar
  43. Wothe, D., Hohimer, A., Morton, M., Thornburg, K., Giraud, G., and Davis, L. (2002). Increased coronary blood flow signals growth of coronary resistance vessels in near-term ovine fetuses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282:R295–R302.PubMedGoogle Scholar
  44. Zachos, N. C., Billiar, R. B., Albrecht, E. D., and Pepe, G. J. (2003). Regulation of oocyte microvilli development in the baboon fetal ovary by estrogen. Endocrinology 145:959–966.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Peter W. Nathanielsz
    • 1
  • Mark J. Nijland
    • 1
  • Christian H. Nevill
    • 2
  • Susan L. Jenkins
    • 1
  • Gene B. Hubbard
    • 2
  • Thomas J. McDonald
    • 1
  • Natalia E. Schlabritz-Loutsevitch
    • 1
  1. 1.Department of Obstetrics and GynecologyUniversity of Texas Health Science CenterSan Antonio
  2. 2.Southwest National Primate Research CenterSouthwest Foundation for Biomedical ResearchSan Antonio

Personalised recommendations