Advertisement

Baboon Model for Dyslipidemia and Atherosclerosis

  • David L. Rainwater
  • John L. VandeBerg
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Clinical manifestations of cardiovascular disease (CVD) remain the leading killer of men and women alike in the United States. The pedigreed baboon colony at the Southwest National Primate Research Center affords many advantages for the study of biological risk factors that influence the onset and progression of CVD. Not only is the baboon model amenable to experimentally induced atherosclerosis (McGill et al., 1976), but close phylogenetic and physiological similarities help to ensure that the results are pertinent to understanding human disease. This article focuses on established predictors of CVD risk, such as dyslipidemia and endothelial dysfunction, and the insights that have been gained from research with pedigreed baboons on the effects of diet and genotype, and their interactions, on these important predictive variables.

Keywords

Quantitative Trait Locus Cholesteryl Ester Transfer Protein Significant Quantitative Trait Locus Arterial Endothelial Cell Biological Risk Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bojanovski, D., Alaupovic, P., Kelley, J. L., and Stout, C. (1978). Isolation and characterization of the major lipoprotein density classes of normal and diabetic baboon (Papio anubis) plasma. Atherosclerosis 31:481–487.CrossRefPubMedGoogle Scholar
  2. Comuzzie, A. G., Martin, L. J., Cole, S. A., Rogers, J., Mahaney, M. C., Blangero, J., and VandeBerg, J. L. (2001). A quantitative trait locus for fat free mass in baboons localizes to a region homologous to human chromosome 6. Obes Res 9(Suppl. 3):71S (abstract).Google Scholar
  3. Cox, L. A., Jett, C., and Hixson, J. E. (1998). Molecular basis of an apolipoprotein[a] null allele: A splice site mutation is associated with deletion of a single exon. J. Lipid Res. 39:1319–1326.PubMedGoogle Scholar
  4. Cox, L. A., Birnbaum, S., and VandeBerg, J. L. (2002). Identification of candidate genes regulating HDL cholesterol using a chromosomal region expression array. Genome Res. 12: 1693–1702.CrossRefPubMedGoogle Scholar
  5. Cox, L. A., Birnbaum, S., Mahaney, M., and VandeBerg, J. L. (2005). Characterization of candidate genes regulating HDL-C using expression profiling. In: Xiong, X. G., Yan, Z. Z., and Liang, W. Y. (eds.), Proceedings of the XIII International Congress on Genes, Gene Families, and Isozymes. Medimond, Bologna Italy, pp. 177–180.Google Scholar
  6. Cox, L. A., Mahaney, M. C., VandeBerg, J. L., and Rogers, J. (2006). A second generation genetic linkage map of the baboon (Papio hamadryas) genome. Genomics 88:274–281.CrossRefPubMedGoogle Scholar
  7. Cox, L. A., Birnbaum, S., Mahaney, M. C., Rainwater, D. L., Williams, J. T., and VandeBerg, J. L. (in press). Identification of promoter variants in baboon endothelial lipase that regulate HDL-cholesterol levels. Circulation. Google Scholar
  8. Eggen, D. A. (1974). Cholesterol metabolism in rhesus monkey, squirrel monkey, and baboon. J. Lipid Res. 15:139–145.PubMedGoogle Scholar
  9. Geer, J. C., McGill, H. C., Jr., Robertson, W. B., and Strong, J. P. (1968). Histologic characteristics of coronary artery fatty streaks. Lab. Invest. 18:565–570.PubMedGoogle Scholar
  10. Hasstedt, S. J., Wilson, D. E., Edwards, C. Q., Cannon, W. N., Carmelli, D., and Williams, R. R. (1983). The genetics of quantitative plasma Lp(a): Analysis of a large pedigree. Am. J. Med. Genet. 16:179–188.CrossRefPubMedGoogle Scholar
  11. Hixson, J. E., Borenstein, S., Cox, L. A., Rainwater, D. L., and VandeBerg, J. L. (1988). The baboon gene for apolipoprotein A-I: Characterization of a cDNA clone and identification of DNA polymorphisms for genetic studies of cholesterol metabolism. Gene 74:483–490.CrossRefPubMedGoogle Scholar
  12. Hixson, J. E., Britten, M. L., Manis, G. S., and Rainwater, D. L. (1989). Apolipoprotein(a) (Apo(a)) glycoprotein isoforms result from size differences in apo(a) mRNA in baboons. J. Biol. Chem. 264:6013–6016.PubMedGoogle Scholar
  13. Kammerer, C. M., Hixson, J. E., and Mott, G. E. (1993). A DNA polymorphism for lecithin:cholesterol acyltransferase (LCAT) is associated with high density lipoprotein cholesterol concentrations in baboons. Atherosclerosis 98:153–163.CrossRefPubMedGoogle Scholar
  14. Kammerer, C. M., Cox, L. A., Mahaney, M. C., Rogers, J., and Shade, R. E. (2001). Sodium-lithium countertransport activity is linked to chromosome 5 in baboons. Hypertension 37: 398–402.PubMedGoogle Scholar
  15. Kammerer, C. M., Rainwater, D. L., Cox, L. A., Schneider, J. L., Mahaney, M. C., Rogers, J., and VandeBerg, J. L. (2002). Locus controlling LDL cholesterol response to dietary cholesterol is on baboon homologue of human chromosome 6. Arterioscler. Thromb. Vasc. Biol. 22: 1720–1725.CrossRefPubMedGoogle Scholar
  16. Kammerer, C. M., Rainwater, D. L., Schneider, J. L., Cox, L. A., Mahaney, M. C., Rogers, J., and VandeBerg, J. F. (2003). Two loci affect angiotensin I-converting enzyme activity in baboons. Hypertension 41:854–859.CrossRefPubMedGoogle Scholar
  17. Konigsberg, L. W., Blangero, J., Kammerer, C. M., and Mott, G. E. (1991). Mixed model segregation analysis of LDL-C concentration with genotype-covariate interaction. Genet. Epidemiol. 8:69–80.CrossRefPubMedGoogle Scholar
  18. Kushwaha, R. S., and McGill, H. C., Jr. (1998). Diet, plasma lipoproteins and experimental atherosclerosis in baboons (Papio sp.). Hum. Reprod. Update 4:420–429.CrossRefPubMedGoogle Scholar
  19. Kushwaha, R. S., Rainwater, D. L., Williams, M. C., Getz, G. S., and McGill, H. C., Jr. (1990). Impaired plasma cholesteryl ester transfer with accumulation of larger high density lipoproteins in some families of baboons (Papio sp.). J. Lipid Res. 31:965–973.PubMedGoogle Scholar
  20. Kushwaha, R. S., Hasan, S. Q., McGill, H. C., Jr., Getz, G. S., Dunham, R. G., and Kanda, P. (1993). Characterization of cholesteryl ester transfer proltein inhibitor from plasma of baboons (Papio sp.). J. Lipid Res. 34:1285–1297PubMedGoogle Scholar
  21. MacCluer, J. W., Kammerer, C. M., Blangero, J., Dyke, B., Mott, G. E., VandeBerg, J. L., and McGill, H. C., Jr. (1988). Pedigree analysis of HDL cholesterol concentration in baboons on two diets. Am. J. Hum. Genet. 43:401–413.PubMedGoogle Scholar
  22. Mahaney, M. C., Rainwater, D. L., Rogers, J., Cox, L. A., Blangero, J., Almasy, L., VandeBerg, J. L., and Hixson, J. E. (1998). A genome search in pedigreed baboons detects a locus mapping to human chromosome 18q that influences variation in serum levels of HDL and its subtractions. Circulation 98:I–5(22) (abstract).Google Scholar
  23. Mahaney, M. C., Blangero, J., Rainwater, D. L., Mott, G. E., Comuzzie, A. G., MacCluer, J. W., and VandeBerg, J. L. (1999). Pleiotropy and genotype by diet interaction in a baboon model for atherosclerosis: A multivariate quantitative genetic analysis of HDL subfractions in two dietary environments. Arterioscler. Thromb. Vasc. Biol. 19:1134–1141.PubMedGoogle Scholar
  24. McGill, H. C., Jr., and Kushwaha, R. S. (1995). Individuality of lipemic responses to diet. Can. J. Cardiol. 11(Suppl G):15G–27G.PubMedGoogle Scholar
  25. McGill, H. C., Jr., Strong, J. P., Holman, R. L., and Werthessen, N. T. (1960). Arterial lesions in the Kenya baboon. Circ. Res. 8:670–679.Google Scholar
  26. McGill, H. C., Jr., Mott, G. E., and Bramblett, C. A. (1976). Experimental atherosclerosis in the baboon. Primates Med. 9:41–65.PubMedGoogle Scholar
  27. McGill, H. C., Jr., McMahan, A., Kruski, A. W., Kelley, J. L., and Mott, G.E. (1981a). Responses of serum lipoproteins to dietary cholesterol and type of fat in the baboon. Arteriosclerosis 1:337–344.Google Scholar
  28. McGill, H. C., Jr., McMahan, C. A., Kruski, A. W., and Mott, G. E. (1981b). Relationship of lipoprotein cholesterol concentrations to experimental atherosclerosis in baboons. Arteriosclerosis 1:3–12.Google Scholar
  29. McGill, H. C., Jr., Carey, K. D., McMahan, C. A., Marinez, Y. N., Cooper, T. E., Mott, G. E., and Schwartz, C. J. (1985). Effects of two forms of hypertension on atherosclerosis in the hyperlipidemic baboon. Arteriosclerosis 5:481–493.PubMedGoogle Scholar
  30. McGill, H. C. Jr., McMahan, C. A., Kushwaha, R. S., Mott, G. E., and Carey, K. D. (1986). Dietary effects on serum lipoproteins of dyslipoproteinemic baboons with high HDL1. Arteriosclerosis 6:651–663.PubMedGoogle Scholar
  31. Rainwater, D. L. (1994). Genetic effects on dietary response of Lp(a) concentrations in baboons. Chem. Phys. Lipids 67/68:199–205.CrossRefGoogle Scholar
  32. Rainwater, D. L., and Manis, G. S. (1988). Immunochemical characterization and quantitation of lipoprotein (a) in baboons. Development of an assay depending on two antigenically distinct proteins. Atherosclerosis 73:23–31.CrossRefPubMedGoogle Scholar
  33. Rainwater, D. L., and Lanford, R. E. (1989). Production of lipoprotein(a) by primary baboon hepatocytes. Biochim. Biophys. Acta 1003:30–35.PubMedGoogle Scholar
  34. Rainwater, D. L., Manis, G. S., and Kushwaha, R. S. (1986). Characterization of an unusual lipoprotein similar to human lipoprotein a isolated from the baboon, Papio sp. Biochim. Biophys. Acta 877:75–78.PubMedGoogle Scholar
  35. Rainwater, D. L., Manis, G. S., and VandeBerg, J. L. (1989). Hereditary and dietary effects on apolipoprotein[a] isoforms and Lp[a] in baboons. J. Lipid Res. 30:549–558.PubMedGoogle Scholar
  36. Rainwater, D. L., Blangero, J., Hixson, J. E., Birnbaum, S., Mott, G. E., and VandeBerg, J. L. (1992). A DNA polymorphism for LCAT is associated with altered LCAT activity and high density lipoprotein size distributions in baboons. Arterioscler. Thromb. 12:682–690.PubMedGoogle Scholar
  37. Rainwater, D. L., Kammerer, C. M., Hixson, J. E., Carey, K. D., Rice, K. S., Dyke, B., VandeBerg, J. F., Slifer, S. H., Atwood, L. D., McGill, H. C., Jr., and VandeBerg, J. L. (1998). Two major loci control variation in β-lipoprotein cholesterol and response to dietary fat and cholesterol in baboons. Arterioscler. Thromb. Vasc. Biol. 18:1061–1068.PubMedGoogle Scholar
  38. Rainwater, D. L., Almasy, L., Blangero, J., Cole, S. A., VandeBerg, J. L., MacCluer, J. W., and Hixson, J. E. (1999). A genome search identifies major quantitative trait loci on human chromosomes 3 and 4 that influence cholesterol concentrations in small LDL particles. Arterioscler. Thromb. Vasc. Biol. 19:777–783.PubMedGoogle Scholar
  39. Rainwater, D. L., Kammerer, C. M., Carey, K. D., Dyke, B., VandeBerg, J. F., Shelledy, W. R., Moore, P. H., Jr., Mahaney, M. C., McGill, H. C., Jr., and VandeBerg, J. L. (2002a). Genetic determination of HDL variation and response to diet in baboons. Atherosclerosis 161: 335–343.Google Scholar
  40. Rainwater, D. L., Kammerer, C. M., Cox, L. A., Rogers, J., Carey, K. D., Dyke, B., Mahaney, M. C., McGill, H. C., Jr., and VandeBerg, J. L. (2002b). A major gene influences variation in large HDL particles and their response to diet in baboons. Atherosclerosis 163:241–248.Google Scholar
  41. Rainwater, D. L., Kammerer, C. M., Mahaney, M. C., Rogers, J., Cox, L. A., Schneider, J. L., and VandeBerg, J. L. (2003). Localization of genes that control LDL size fractions in baboons. Atherosclerosis168:15–22.CrossRefPubMedGoogle Scholar
  42. Rainwater, D. L., Mahaney, M. C., Wang, X. L., Rogers, J., Cox, L. A., and VandeBerg, J. L. (2005). Determinants of variation in serum paraoxonase enzyme activity in baboons. J. Lipid Res. 46:1450–1456.CrossRefPubMedGoogle Scholar
  43. Rainwater, D. L., Mahaney, M. C., VandeBerg, J. L., and Wang, X. L. (in press). Vitamin E dietary supplementation significantly affects multiple risk factors for cardiovascular disease in baboons. Am. J. Clin. Nutr. Google Scholar
  44. Robertson, W. B., Geer, J. C., Strong, J. P., and McGill, H. C., Jr. (1963). The fate of the fatty streak. Exp. Mol. Pathol. 52(Suppl. I):28–39.PubMedGoogle Scholar
  45. Rogers, J., Mahaney, M. C., Witte, S. M., Nair, S., Newman, D., Wedel, S., Rodriguez, L. A., Rice, K. S., Slifer, S. H., Perelygin, A., Slifer, M., Palladino-Negro, P., Newman, T., Chambers, K., Joslyn, G., Parry, P., and Morin, P. A. (2000). A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics 67:237–247.CrossRefPubMedGoogle Scholar
  46. Ross, R. (1999). Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 340:115–126.CrossRefPubMedGoogle Scholar
  47. Shi, Q., Aida, K., VandeBerg, J. L., and Wang, X. L. (2004a). Passage-dependent changes in baboon endothelial cells--relevance to in vitro aging. DNA Cell Biol. 23:502–509.Google Scholar
  48. Shi, Q., Wang, J., Wang, X. L., and VandeBerg, J. L. (2004b). Comparative analysis of vascular endothelial cell activation by TNF-α and LPS in humans and baboons. Cell Biochem. Biophys. 40:289–304.Google Scholar
  49. Shi, Q., VandeBerg, J. F., Jett, C., Rice, K., Leland, M. M., Talley, L., Kushwaha, R. S., Rainwater, D. L., VandeBerg, J. L., and Wang, X. L. (2005). Arterial endothelial dysfunction in baboons fed a high-cholesterol, high-fat diet. Am. J. Clin. Nutr. 82:751–759.PubMedGoogle Scholar
  50. Shi, Q., Hubbard, G. B., Kushwaha, R. S., Rainwater, D. L., Thomas, C. A., III, Leland, M. M., VandeBerg, J. L., Wang, X. L. (2007). Endothelial senescence after high-cholesterol, high-fat diet challenge in baboons. Am. J. Physiol. Heart Circ. Physiol. 292:H2913–H2920.CrossRefPubMedGoogle Scholar
  51. Singh, A. T. K., Rainwater, D. L., Kammerer, C. M., Sharp, R. M., Poushesh, M., Shelledy, W. R., and VandeBerg, J. L. (1996). Dietary and genetic effects on LDL size measures in baboons. Arterioscler. Thromb. Vasc. Biol. 16:1448–1453.PubMedGoogle Scholar
  52. Utermann, G. (1989). The mysteries of lipoprotein(a). Science 246:904–910.CrossRefPubMedGoogle Scholar
  53. Vinson, A., Mahaney, M. C., Cox, L. A., Rogers, J., VandeBerg, J. L., and Rainwater, D. L. (in press). A pleiotropic QTL on 2p influences serum Lp-PLA2 activity and LDL cholesterol concentration in a baboon model for the genetics of atherosclerosis risk factors. Atherosclerosis.Google Scholar
  54. Wang, Q. F., Liu, X., O’Connell, J., Peng, Z., Krauss, R. M., Rainwater, D. L., VandeBerg, J. L., Rubin, E. M., Cheng, J. F., and Pennacchio, L. A. (2004a). Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons. Hum. Mol. Genet. 13:1049–1056.Google Scholar
  55. Wang, X. L., Wang, J., Shi, Q., Carey, K. D., and VandeBerg, J. L. (2004b). Arterial wall-determined risk factors to vascular diseases: A nonhuman primate model. Cell Biochem. Biophys. 40:371–388.Google Scholar
  56. White, A. L., and Lanford, R. E. (1994). Cell surface assembly of lipoprotein(a) in primary cultures of baboon hepatocytes. J. Biol. Chem. 269:28716–28723.PubMedGoogle Scholar
  57. White, A. L., Rainwater, D. L., and Lanford, R. E. (1993). Intracellular maturation of apolipoprotein[a] and assembly of lipoprotein[a] in primary baboon hepatocytes. J. Lipid Res. 34:509–517.PubMedGoogle Scholar
  58. White, A. L., Hixson, J. E., Rainwater, D. L., Lanford, R. E. (1994a). Molecular basis for “null” lipoprotein(a) phenotypes and the influence of apolipoprotein(a) size on plasma lipoprotein(a) level in the baboon. J. Biol. Chem. 269:9060–9066.Google Scholar
  59. White, A. L., Rainwater, D. L., Hixson, J. E., Estlack, L. E., and Lanford, R. E. (1994b). Intracellular processing of apo(a) in primary baboon hepatocytes. Chem. Phys. Lipids 67/68:123–133.Google Scholar
  60. White, A. L., Guerra, B., and Lanford, R. E. (1997). Influence of allelic variation on apolipoprotein(a) folding in the endoplasmic reticulum. J. Biol. Chem. 272:5048–5055.CrossRefPubMedGoogle Scholar
  61. White, A. L., Guerra, B., Wang, J., and Lanford, R. E. (1999). Presecretory degradation of apolipoprotein[a] is mediated by the proteasome pathway. J. Lipid Res. 40:275–286.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David L. Rainwater
    • 1
  • John L. VandeBerg
    • 1
    • 2
  1. 1.Department of Genetics, Southwest National Primate Research CenterSouthwest Foundation for Biomedical ResearchSan Antonio
  2. 2.Southwest National Primate Research CenterSouthwest Foundation for Biomedical ResearchSan Antonio

Personalised recommendations