The Baboon Model for Dental Development

  • Leslea J. Hlusko
  • Michael C. Mahaney
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

The dental research implications of the physiological, immunological, and morphological similarities between baboons and humans have long been recognized (Virgadamo et al., 1972; Aufdemorte et al., 1993). Applied dentistry has widely employed the baboon as a model upon which to develop procedures and techniques and to test the material biocompatibility prior to introduction into general practice on humans. For example, baboons have been used for the tests of procedures to mechanically modify jaw bone growth (Bell et al., 1999), tests of responses to allograft mixtures for bony reconstructions (Kohles et al., 2000), development for therapeutic osteogenesis and functional and morphological bone repair techniques (Ripamonti, 1992), tests of gene products (such as BMP proteins) to induce periodontal regeneration (Ripamonti et al., 2001), protocols for stabilizing jaws for treating fractures (Fisher et al., 1990), assessments of bone response to prosthetic fit (Carr et al., 1996), and tests of responses to orthodontic apparatus (Woods and Nanda, 1991).


Quantitative Trait Locus Dental Development Supernumerary Tooth Enamel Defect Amelogenesis Imperfecta 


  1. Almasy, L., and Blangero, J. (1998). Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62:1198–1211.PubMedCrossRefGoogle Scholar
  2. Amendt, B. A., Sutherland, L. B., Semina, E. V., and Russo, A. F. (1998). The molecular basis of Rieger syndrome. Analysis of Pitx2 homeodomain protein activities. J. Biol. Chem. 273: 20066–20072.PubMedCrossRefGoogle Scholar
  3. Aslan, G., Karacal, N., and Erdogan, B. (2000). Cleft lip and dental eruption. Ann. Plast. Surg. 45:343–344.PubMedGoogle Scholar
  4. Aufdemorte, T. B., Boyan, B. D., Fox, W. C., and Miller, D. (1993). Diagnostic tools and biologic markers: Animal models in the study of osteoporosis and oral bone loss. J. Bone Miner. Res. 8(Suppl. 2):S529–S534.PubMedGoogle Scholar
  5. Baume, R. M., and Lapin, B. A. (1983). Inbreeding effects on dental morphometrics in Papio hamadryas. Am. J. Phys. Anthropol. 62:129–135.PubMedCrossRefGoogle Scholar
  6. Bell, W. H., Gonzalez, M., Samchukov, M. L., and Guerrero, C. A. (1999). Intraoral widening and lengthening of the mandible in baboons by distraction osteogenesis. J. Oral Maxillofac. Surg. 57:548–562.PubMedCrossRefGoogle Scholar
  7. Brook, A. H., and Smith, J. M. (1998). The aetiology of developmental defects of enamel: A prevalence and family study in East London, U.K. Connect. Tissue Res. 39:151–156.PubMedCrossRefGoogle Scholar
  8. Brown, C. J. (2000). Dyskeratosis congenita: Report of a case. Int. J. Paediatr. Dent. 10:328–334.Google Scholar
  9. Butler, P. M. (1992). Correlative growth of upper and lower tooth germs in the human foetus. Ann. Zool. Fennici 28:261–271.Google Scholar
  10. Byrd, K. E. (1977). Antimere asymmetry and morphogenetic fields in Old World monkey dentitions. J. Dent. Res. 56:700.PubMedCrossRefGoogle Scholar
  11. Carr, A. B., Gerard, D. A., and Larsen, P. E. (1996). The response of bone in primates around unloaded dental implants supporting prostheses with different levels of fit. J. Prosthet. Dent. 76:500–509.PubMedCrossRefGoogle Scholar
  12. Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. Am. Zool. 36:44–50.Google Scholar
  13. Condie, B. G., and Capecchi, M. R. (1993). Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and the axis. Development 119:579–595.PubMedGoogle Scholar
  14. Conroy, G. C., and Mahoney, C. J. (1991). Mixed longitudinal study of dental emergence in the chimpanzee, Pan troglodytes (Primates, Pongidae). Am. J. Phys. Anthropol. 86:243–254.CrossRefGoogle Scholar
  15. Cooper, S. C., Flaitz, C. M., Johnston, D. A., Lee, B., and Hecht, J. T. (2001). A natural history of cleidocranial dysplasia. Am. J. Med. Genet. 104:1–6.PubMedCrossRefGoogle Scholar
  16. Cunha, R. F., Boer, F. A., Torriani, D. D., and Frossard, W. T. (2001). Natal and neonatal teeth: Review of the literature. Pediatr. Dent. 23:158–162.PubMedGoogle Scholar
  17. Das, S., Das, A. K., and Murphy, R. A. (1997). Experimental apexigenesis in baboons. Endod. Dent. Traumatol. 13:31–35.PubMedCrossRefGoogle Scholar
  18. Dortbudak, O., Haas, R., and Mailath-Pokorny, G. (2002). Effect of low-power laser irradiation on bony implant sites. Clin. Oral Implants Res. 13:288–292.PubMedCrossRefGoogle Scholar
  19. Ericson, S., and Kurol, J. (1987). Radiographic examination of ectopically erupting maxillary canines. Am. J. Orthod. Dentofacial Orthop. 91:483–492.PubMedCrossRefGoogle Scholar
  20. Eskeli, R., Laine-Alava, M.T., Hausen, H., and Pahkala, R. 1999. Standards for permanent tooth emergence in Finnish children. The Angle Orthodontist 69:529–533.PubMedGoogle Scholar
  21. Ferguson, B. M., Brockdorff, N., Formstone, E., Ngyuen, T., Kronmiller, J., and Zonana, J. (1997). Cloning of Tabby, the murine homolog of the human EDA gene: Evidence for a membrane-associated protein with a short collagenous domain. Hum. Mol. Genet. 6:1589–1594.PubMedCrossRefGoogle Scholar
  22. Ferguson, C. A., Tucker, A. S., Christensen, L., Lau, A. L., Matzuk, M. M., and Sharpe, P. T. (1998). Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev. 12:2636–2649.PubMedCrossRefGoogle Scholar
  23. Fisher, I. T., Cleaton-Jones, P. E., and Lownie, J. F. (1990). Relative efficiencies of various wiring configurations commonly used in open reductions of fractures of the angle of the mandible. Oral Surg. Oral Med. Oral Pathol. 70:10–17.PubMedCrossRefGoogle Scholar
  24. Flaitz, C. M., and Hicks, J. (2001). Delayed tooth eruption associated with an ameloblastic fibro-odontoma. Pediatr. Dent. 23:253–254.PubMedGoogle Scholar
  25. Foti, B., Tavitian, P., Tosello, A., Bonfil, J. J., and Franquin, J. C. (1999). Polymetallism and osseointegration in oral implantology: Pilot study on primate. J. Oral Rehabil. 26:495–502.PubMedCrossRefGoogle Scholar
  26. Fuks, A. B., Funnell, B., and Cleaton-Jones, P. (1990). Pulp response to a composite resin inserted in deep cavities with and without a surface seal. J. Prosthet. Dent. 63:129–134.PubMedCrossRefGoogle Scholar
  27. Gettleman, L., Cocks, F. H., Darmiento, L. A., Levine, P. A., Wright, S., and Nathanson, D. (1980). Measurement of in vivo corrosion rates in baboons, and correlation with in vitro tests. J. Dent. Res. 59:689–707.PubMedCrossRefGoogle Scholar
  28. Hamner, J. E., III. (1973). Oral implantology and oral carcinogenesis in primates. Am. J. Phys. Anthropol. 38:301–308.PubMedCrossRefGoogle Scholar
  29. He, T., Friede, H., and Kiliaridis, S. (2002). Dental eruption and exfoliation chronology in the ferret (Mustela putorius furo). Arch. Oral Biol. 47:619–623.PubMedCrossRefGoogle Scholar
  30. Hlusko, L. J. (2000). Identifying the genetic mechanisms of dental variation in cercopithecoid primates. Ph.D. Dissertation, Pennsylvania State University.Google Scholar
  31. Hlusko, L. J., and Mahaney, M. C. (2003). Genetic contributions to expression of the baboon cingular remnant. Arch. Oral Biol. 48:663–672.PubMedCrossRefGoogle Scholar
  32. Hlusko, L. J., Weiss, K. M., and Mahaney, M. C. (2002). Statistical genetic comparison of two techniques for assessing molar crown size in pedigreed baboons. Am. J. Phys. Anthropol. 117: 182–189.PubMedCrossRefGoogle Scholar
  33. Hlusko, L. J., Maas M. L., and Mahaney, M.C. (2004a). Statistical genetics of molar cusp patterning in pedigreed baboons: implications for primate dental development and evolution. J. Exp. Zoolog. Part B Mol. Dev. Evol. 302(3):268–283.Google Scholar
  34. Hlusko, L. J., Suwa, G., Kono, R., and Mahaney, M. C. (2004b). Genetics and the evolution of primate enamel thickness: A baboon model. Am. J. Phys. Anthropol. 124(3):223–233.Google Scholar
  35. Hohl, T. H., and Tucek, W. H. (1982). Measurement of condylar loading forces by instrumented prosthesis in the baboon. J. Maxillofac. Surg. 10:1–7.PubMedCrossRefGoogle Scholar
  36. Hu, G., Vastardis, H., Bendall, A. J., Wang, Z., Logan, M., Zhang, H., Nelson, C., Stein, S., Greenfield, N., Seidman, C. E., Seidman, J. G., and Abate-Shen, C. (1998). Haploinsufficiency of MSX1: A mechanism for selective tooth agenesis. Mol. Cell. Biol. 18:6044–6051.PubMedGoogle Scholar
  37. Jälevik, B., Fasth, A., and Dahllof, G. (2002). Dental development after successful treatment of infantile osteopetrosis with bone marrow transplantation. Bone Marrow Transplant. 29: 537–540.PubMedCrossRefGoogle Scholar
  38. Jernvall, J. (1995). Mammalian molar cusp patterns: Developmental mechanisms of diversity. Acta Zool. Fennici 198:1–61.Google Scholar
  39. Jernvall, J. (2000). Linking development with generation of novelty in mammalian teeth. Proc. Natl. Acad. Sci. USA 97:2641–2645.Google Scholar
  40. Jernvall, J., and Jung, H.-S. (2000). Genotype, phenotype, and developmental biology of molar tooth characters. Yearb. Phys. Anthropol. 43:171–190.CrossRefGoogle Scholar
  41. Jernvall, J., and Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev. 92:19–29.PubMedCrossRefGoogle Scholar
  42. Jernvall, J., Kettunen, P., Karavanova, I., Martin, L. B., and Thesleff, I. (1994). Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: Non-dividing cells express growth stimulating Fgf-4 gene. Int. J. Dev. Biol. 38:463–469.PubMedGoogle Scholar
  43. Jernvall, J., Åberg, T., Kettunen, P., Keränen, S., and Thesleff, I. (1998). The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125:161–169.PubMedGoogle Scholar
  44. Jernvall, J., Keränen, S. V., and Thesleff, J. (2000). Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proc. Natl. Acad. Sci. USA 97:14444–14448.Google Scholar
  45. Kahumbu, P., and Eley, R. M. (1991). Teeth emergence in wild olive baboons in Kenya and formulation of a dental schedule for aging wild baboon populations. Am. J. Primatol. 23:1–9.CrossRefGoogle Scholar
  46. Kawasaki, K., and Weiss, K. M. (2003). Mineralized tissue and vertebrate evolution: The secretory calcium-binding phosphoprotein gene cluster. Proc. Natl. Acad. Sci. USA 100: 4060–4065.Google Scholar
  47. Keränen, S. V., Åberg, T., Kettunen, P., Thesleff, I., and Jernvall, J. (1998). Association of developmental regulatory genes with the development of different molar tooth shapes in two species of rodents. Dev. Genes Evol. 208:477–486.PubMedCrossRefGoogle Scholar
  48. Kessel, M. and Gruss, P. (1991). Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104.PubMedCrossRefGoogle Scholar
  49. Kieser, J. A. (1984). Wave superpositioning and the initiation of tooth morphogenesis: An application of the Bandwidth Theorem. Med. Hypoth. 14:249–252.CrossRefGoogle Scholar
  50. Kjellberg, H., Beiring, M., and Wikland, K. A. (2000). Craniofacial morphology, dental occlusion, tooth eruption, and dental maturity in boys of short stature with or without growth hormone deficiency. Eur. J. Oral Sci. 108:359–367.PubMedCrossRefGoogle Scholar
  51. Kobayashi, H., Taguchi, Y., and Noda, T. (1999). Eruption disturbances of maxillary permanent central incisors associated with anomalous adjacent permanent lateral incisors. Int. J. Paediatr. Dent. 9:277–284.PubMedCrossRefGoogle Scholar
  52. Kohles, S. S., Vernino, A. R., Clagett, J. A., Yang, J. C., Severson, S., and Holt, R. A. (2000). A morphometric evaluation of allograft matrix combinations in the treatment of osseous defects in a baboon model. Calcif. Tissue Int. 67:156–162.PubMedCrossRefGoogle Scholar
  53. Kosowicz, J., and Ryzmski, L. (1977). Abnormalities of tooth development in pituitary dwarfism. Oral Surg. Oral Med. Oral Pathol. 44:853–863.PubMedCrossRefGoogle Scholar
  54. Kuksova, M. I. (1958). [Emergence of deciduous teeth in the hamadryas baboon.] [Russian.] Sov. Antropologiya (1):17–21.Google Scholar
  55. Kurol, J. (2002). Early treatment of tooth-eruption disturbances. Am. J. Orthod. Dentofacial Orthop. 121:588–591.PubMedCrossRefGoogle Scholar
  56. Leamy, L. J., Routman, E. J., and Cheverud, J. M. (1999). Quantitative trait loci for early- and late-developing skull characters in mice: A test of the genetic independence model of morphological integration. Am. Nat. 153:201–214.CrossRefGoogle Scholar
  57. Loevy, H. T., and Goldberg, A. F. (1999). Shifts in tooth maturation patterns in non-French Canadian boys. Int. J. Paediatr. Dent. 9:105–110.PubMedCrossRefGoogle Scholar
  58. Lownie, J. F, Cleaton-Jones, P. E., Fatti, L. P., Lownie, M. A., and Forbes, M. (1996). Nerve degeneration within the dental pulp after segmental osteotomies in the baboon (Papio ursinus). J. Dent. Assoc. S. Afr. 51:754–758.PubMedGoogle Scholar
  59. Maas, R., and Bei, M. (1997). The genetic control of early tooth development. Crit. Rev. Oral Biol. Med. 8:4–39.PubMedCrossRefGoogle Scholar
  60. Macey-Dare, L. V., and Goodman, J. R. (1999). Incontinentia pigmenti: Seven cases with dental manifestations. Int. J. Paediatr. Dent. 9:293–297.PubMedCrossRefGoogle Scholar
  61. Mahaney, M. C., Fujiwara, T. M., and Morgan, K. (1990). Dental agenesis in the Dariusleut Hutterite Brethren: Comparisons to selected Caucasoid population surveys. Am. J. Phys. Anthropol. 82:165–177.PubMedCrossRefGoogle Scholar
  62. Maki, K., Morimoto, A., Nishioka, T., Kimura, M., and Braham, R. L. (1999). The impact of race on tooth formation. ASDC J. Dent. Child. 66:353–356.PubMedGoogle Scholar
  63. Marshall, P. M., and Butler, P. M. (1966). Molar cusp development in the bat, Hipposideros beatus, with reference to the ontogenetic basis of occlusion. Arch. Oral Biol. 11:949–966.PubMedCrossRefGoogle Scholar
  64. Matsumoto, M., Nakagawa, Y., Sobue, S., and Ooshima, T. (2001). Simultaneous presence of a congenitally missing premolar and supernumerary incisor in the same jaw: Report of case. ASDC J. Dent. Child. 68:63–66.Google Scholar
  65. McMahon, K. T., Wasfy, M. O., Yonushonis, W. P., Minah, G. E., Falkler, W. A., Jr. (1990). Comparative microbiological and immunological studies of subgingival dental plaque from man and baboons. J. Dent. Res. 69:55–59.PubMedCrossRefGoogle Scholar
  66. Miller, D. R., Aufdemorte, T. B., Fox, W. C., Waldrop, T. C., Mealey, B. L., and Brunsvold, M. A. (1995). Periodontitis in the baboon: A potential model for human disease. J. Periodontal Res. 30:404–409.PubMedCrossRefGoogle Scholar
  67. Mossey, P. A. (1999). The heritability of malocclusion: Part 2. The influence of genetics in malocclusion. Br. J. Orthod. 26:195–203.PubMedCrossRefGoogle Scholar
  68. Nyström, M., Kleemola-Kujala, E., Evalahti, M., Peck, L., and Kataja, M. (2001). Emergence of permanent teeth and dental age in a series of Finns. Acta Odontol. Scand. 59:49–56.PubMedCrossRefGoogle Scholar
  69. O’Connell, A. C., and Marini, J. C. (1999). Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 87:189–196.PubMedCrossRefGoogle Scholar
  70. Oguntebi, B. R., Dover, M. S., Franklin, C. J., and Tuwaijri, A. S. (1988). The effect of collagen and indomethacin on inflamed dental pulp wounds of baboon teeth. Oral Surg. Oral Med. Oral Pathol. 65:233–239.PubMedCrossRefGoogle Scholar
  71. Olson, E., and Miller, R. (1958). Morphological Integration. University of Chicago Press, Chicago.Google Scholar
  72. Online Mendelian Inheritance in Man, OMIMTM. (2001). Johns Hopkins University, Baltimore, MD. MIM Number: 125490. Dentinogenesis imperfecta 1; DGI1, Gene map locus 4q21.3. (2/1/2001);
  73. Pameijer, C. H., and Stanley, H. R. (1998). The disastrous effects of the “total etch” technique in vital pulp capping in primates. Am. J. Dent. 11 Spec No:S45–S54.Google Scholar
  74. Pascon, E. A., Leonardo, M. R., Safavi, K., and Langeland, K. (1991). Tissue reaction to endodontic materials: Methods, criteria, assessment, and observations. Oral Surg. Oral Med. Oral Pathol. 72:222–237.PubMedCrossRefGoogle Scholar
  75. Perlmutter, S., Tagger, M., Tagger, E., and Abram, M. (1987). Effect of the endodontic status of the tooth on experimental periodontal reattachment in baboons: A preliminary investigation. Oral Surg. Oral Med. Oral Pathol. 63:232–236.PubMedCrossRefGoogle Scholar
  76. Phillips-Conroy, J. E., and Jolly, C. J. (1988). Dental eruption schedules of wild and captive baboons. Am. J. Primatol. 15:17–29.CrossRefGoogle Scholar
  77. Piattelli, A., and Eleuterio, A. (1991). Primary failure of eruption. Acta Stomatol. Belg. 88: 127–130.PubMedGoogle Scholar
  78. Pispa, J., Jung, H. S., Jernvall, J., Kettunen, P., Mustonen, T., Tabata, M. J., Kere, J., and Thesleff, I. (1999). Cusp patterning defect in Tabby mouse teeth and its partial rescue by FGF. Dev. Biol. 216:521–534.PubMedCrossRefGoogle Scholar
  79. Prusack, N., Pringle, G., Scotti, V., and Chen, S. Y. (2000). Segmental odontomaxillary dysplasia: A case report and review of the literature. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 90:483–488.Google Scholar
  80. Rafter, M., Baker, M., Alves, M., Daniel, J., and Remeikis, N. (2002). Evaluation of healing with use of an internal matrix to repair furcation perforations. Int. Endod. J. 35:775–783.PubMedCrossRefGoogle Scholar
  81. Rajnay, Z. W., Butler, J. R., Lindsay, R. R., and Vernino, A. R. (1996). The measurement of molar furcation defect fill using digital computer technology–report on a new technique. Int. J. Periodontics Restorative Dent. 16:30–39.Google Scholar
  82. Reed, O. M. (1973). Papio cynocephalus age determination. Am. J. Phys. Anthropol. 38:309–314.PubMedCrossRefGoogle Scholar
  83. Ripamonti, U. (1992). Calvarial reconstruction in baboons with porous hydroxyapatite. J. Craniofac. Surg. 3:149–159.PubMedCrossRefGoogle Scholar
  84. Ripamonti, U., Crooks, J., Petit, J. C., and Rueger, D. C. (2001). Periodontal tissue regeneration by combined applications of recombinant human osteogenic protein-1 and bone morphogenetic protein-2. A pilot study in chacma baboons (Papio ursinus). Eur. J. Oral Sci. 109: 241–248.PubMedCrossRefGoogle Scholar
  85. Robinson, C., Brookes, S. J., Shore, R. C., and Kirkham, J. (1998). The developing enamel matrix: Nature and function. Eur. J. Oral Sci. 106(Suppl. 1):282–291.PubMedGoogle Scholar
  86. Rogers, J., Mahaney, M. C., Witte, S. M., Nair, S., Newman, D., Wedel, S., Rodriguez, L. A., Rice, K. S., Slifer, S. H., Perelygin, A., Slifer, M., Palladino-Negro, P., Newman, T., Chambers, K., Joslyn, G., Parry, P., and Morin, P. A. (2000). A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics 67:237–247.PubMedCrossRefGoogle Scholar
  87. Sarnat, H., Kaplan, I., Pertzelan, A., and Laron, Z. P. (1988). Comparison of dental findings in patients with isolated growth hormone deficiency treated with human growth hormone (hGH) and in untreated patients with Laron-type dwarfism. Oral Surg. Oral Med. Oral Pathol. 66: 581–586.PubMedCrossRefGoogle Scholar
  88. Schultz, A. H. (1935). Eruption and decay of the permanent teeth in primates. Am. J. Phys. Anthropol. 19:489–581.CrossRefGoogle Scholar
  89. Schwendeman, M., Cummins, L. B., Moore, G. T., and McMahan, C. A. (1980). Age estimation in baboons (Papio cynocephalus) using dental characteristics. Lab Anim. Sci. 30:860–864.PubMedGoogle Scholar
  90. Sharpe, P. T. (1995). Homeobox genes and orofacial development. Connect. Tiss. Res. 32:17–25.CrossRefGoogle Scholar
  91. Siegel, M. I., and Sciulli, P. W. (1973). Eruption sequence of the deciduous dentition of Papio cynocephalus. J. Med. Primatol. 2:247–248.PubMedGoogle Scholar
  92. Simmer, J. P., and Hu, J. C. (2001). Dental enamel formation and its impact on clinical dentistry. J. Dent. Educ. 65:896–905.PubMedGoogle Scholar
  93. Singer, S., Pinhas-Hamiel, O., and Botzer, E. (2001). Accelerated dental development as a presenting symptom of 21-hydroxylase deficient nonclassic congenital adrenal hyperplasia. Clin. Pediatr. (Phila.) 40:621–623.CrossRefGoogle Scholar
  94. Slaughter, B. H., Pine, R. H., and Pine, N. E. (1974). Eruption of cheek teeth in insectivora and carnivora. J. Mammal. 55:115–125.PubMedCrossRefGoogle Scholar
  95. Smith, B. H., Crummet, T. L., and Brandt, K. L. (1994). Ages of eruption of primate teeth: A compendium for aging individuals and comparing life histories. Yearb. Phys. Anthropol. 37:177–231.CrossRefGoogle Scholar
  96. Srivastava, A. K., Pispa, J., Hartung, A. J., Du, Y., Ezer, S., Jenks, T., Shimada, T., Pekkanen, M., Mikkola, M. L., Ko, M. S., Thesleff, I., Kere, J., and Schlessinger, D. (1997). The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc. Natl. Acad. Sci. USA 94:13069–13074.Google Scholar
  97. Stephen, L. X., Hamersma, H., Gardner, J., and Beighton, P. (2001). Dental and oral manifestations of sclerosteosis. Int. Dent. J. 51:287–290.PubMedGoogle Scholar
  98. Stock, D. W. (2001). The genetic basis of modularity in the development and evolution of the vertebrate dentition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356:1633–1653.PubMedCrossRefGoogle Scholar
  99. Stock, D. W., Weiss, K. M., and Zhao, Z. (1997). Patterning of the mammalian dentition in development and evolution. BioEssays 19:481–490.PubMedCrossRefGoogle Scholar
  100. Stockton, D. W., Das, P., Goldenberg, M., D’Souza, R. N., and Patel P. I. (2000). Mutation of PAX9 is associated with oligodontia. Nat. Genet. 24:18–19.PubMedCrossRefGoogle Scholar
  101. Swindler, D. R. (1985). Nonhuman primate dental development and its relationship to human dental development. In: Watts, E. S. (ed.), Nonhuman Primate Models for Human Growth and Development. Alan R. Liss, Inc., New York, pp. 67–94.Google Scholar
  102. Swindler, D. R., and Meekins, D. (1991). Dental development of the permanent mandibular teeth in the baboon, Papio cynocephalus. Am. J. Hum. Biol. 3:571–580.CrossRefGoogle Scholar
  103. Swindler, D. R., Orlosky, F. J., and Hendrickx, A. G. (1968). Calcification of the deciduous molars in baboons (Papio anubis) and other primates. J. Dent. Res. 47:167–70.PubMedCrossRefGoogle Scholar
  104. Thomas, B. L., and Sharpe, P. T. (1998). Patterning of the murine dentition by homeobox genes. Eur. J. Oral Sci. 106(Suppl. 1):48–54.PubMedGoogle Scholar
  105. Thomas, B. L., Tucker, A. S., Qui, M., Ferguson, C. A., Hardcastle, Z., Rubenstein, J. L., and Sharpe, P. T. (1997). Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development 124:4811–4818.PubMedGoogle Scholar
  106. Townsend, G., Richards, L., and Hughes, T. (2003). Molar intercuspal dimensions: Genetic input to phenotypic variation. J. Dent. Res. 82:350–355.PubMedCrossRefGoogle Scholar
  107. Tucker, A., and Sharpe, P. (2004). The cutting-edge of mammalian development: how the embryo makes teeth. Nat. Rev. Genet. 5:499–508.PubMedCrossRefGoogle Scholar
  108. Turing, A. M. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. B Biol. Sci. 237:37–72.CrossRefGoogle Scholar
  109. Vaahtokari, A, Åberg, T., and Thesleff, I. (1996). Apoptosis in the developing tooth: Association with an embryonic signaling center and suppression by EGF and FGF-4. Development 122:121–129.PubMedGoogle Scholar
  110. van den Boogaard, M.-J. H., Dorland, M., Beemer, F. A., and van Amstel, H. K. P. (2000). MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat. Genet. 24:342–343.PubMedCrossRefGoogle Scholar
  111. Vastardis, H. (2000). The genetics of human tooth agenesis: New discoveries for understanding dental anomalies. Am. J. Orthod. Dentofacial Orthop. 117:650–656.PubMedGoogle Scholar
  112. Vastardis, H., Karimbux, N., Guthua, S. W., Seidman, J. G., and Seidman, C. E. (1996). A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat. Genet. 13: 417–421.PubMedCrossRefGoogle Scholar
  113. Virgadamo, P., Hodosh, M., Povar, M., and Shklar, G. (1972). The dentition of Papio anubis. J. Dent. Res. 51:1338–1345.PubMedCrossRefGoogle Scholar
  114. Wake, M., Hesketh, K., and Lucas, J. (2000). Teething and tooth eruption in infants: A cohort study. Pediatrics 106:1374–1379.PubMedCrossRefGoogle Scholar
  115. Weerheijm, K. L., Groen, H. J., Beentjes, V. E., and Poorterman, J. H. (2001). Prevalence of cheese molars in eleven-year-old Dutch children. ASDC J. Dent. Child. 68:259–262.PubMedGoogle Scholar
  116. Weiss, K. M., Stock, D. W., and Zhao, Z. (1998). Dynamic interactions and the evolutionary genetics of dental patterning. Crit. Rev. Oral Biol. Med. 9:369–398.PubMedCrossRefGoogle Scholar
  117. Whittaker, J. M., James, R. A., Lozada, J., Cordova, C., and Freidline, C. (1990). Suspension mechanism of subperiosteal implants in baboons. J. Oral Implantol. 16:190–197.PubMedGoogle Scholar
  118. Wise, G. E., Frazier-Bowers, S., and D'Souza, R. N. (2002). Cellular, molecular, and genetic determinants of tooth eruption. Crit. Rev. Oral Biol. Med. 13:323–334.PubMedCrossRefGoogle Scholar
  119. Woods, M. G., and Nanda, R. S. (1991). Intrusion of posterior teeth with magnets: An experiment in nongrowing baboons. Am. J. Orthod. Dentofacial Orthop. 100:393–400.PubMedCrossRefGoogle Scholar
  120. Workman, M. S., Leamy, L. J., Routman, E. J., and Cheverud, J. M. (2002). Analysis of quantitative trait locus effects on the size and shape of mandibular molars in mice. Genetics 160:1573–1586.PubMedGoogle Scholar
  121. Zhao, Z., Weiss, K. M., and Stock, D. W. (2000a). Development and evolution of dentition patterns and their genetic basis. In: Teaford, M. F., Smith, M. M., and Ferguson, M. W. J. (eds.), Development, Function and Evolution of Teeth. Cambridge University Press, New York, pp. 152–172.Google Scholar
  122. Zhao, Z., Stock, D. W., Buchanan, A. V., and Weiss, K. M. (2000b). Expression of Dlx genes during the development of the murine dentition. Dev. Genes Evol. 210:270–275.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Leslea J. Hlusko
    • 1
  • Michael C. Mahaney
    • 2
    • 3
  1. 1.Department of Integrative BiologyUniversity of CaliforniaBerkeley
  2. 2.Department of GeneticsSouthwest Foundation for Biomedical ResearchSan Antonio
  3. 3.Southwest National Primate Research Center, Southwest Foundation for Biomedical ResearchSan Antonio

Personalised recommendations