Density Estimation

  • Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Mean Square Error Density Estimation Kernel Density Estimate Kernel Estimate Integrate Mean Square Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banerjee, M. and Wellner, J. (2001). Likelihood ratio tests for monotone functions, Ann. Stat., 29(6), 1699–1731 .MATHCrossRefMathSciNetGoogle Scholar
  2. Bickel, P.J. and Rosenblatt, M. (1973). On some global measures of the deviations of density function estimates, Ann. Stat., 1,1071–1095.MATHCrossRefMathSciNetGoogle Scholar
  3. Birge, L. (1989). The Grenander estimator: a nonasymptotic approach, Ann. Stat., 17(4), 1532–1549 .MATHCrossRefMathSciNetGoogle Scholar
  4. Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density estimates, Biometrika, 71(2), 353–360 .CrossRefMathSciNetGoogle Scholar
  5. Breiman, L., Meisel, W., and Purcell, E. (1977). Variable kernel estimates of multivariate densities, Technometrics, 19,135–144.MATHCrossRefGoogle Scholar
  6. Brown, L. (1992). Minimaxity, more or less, in Statistical Decision Theory and Related Topics, Vol. V, J. Berger and S.S. Gupta (eds.), Springer-Verlag, New York, 1–18.Google Scholar
  7. Brown, L. (2000). An essay on statistical decision theory, J. Am. Stat. Assoc., 95,1277–1281.MATHCrossRefGoogle Scholar
  8. Chernoff, H. (1964). Estimation of the mode, Ann. Inst. Stat. Math., 16,31–41.MATHMathSciNetCrossRefGoogle Scholar
  9. Chow, Y.S., Geman, S. and Wu, L.D. (1983). Consistent cross-validated density estimation, Ann. Stat., 11(1), 25–38 .MATHCrossRefMathSciNetGoogle Scholar
  10. DasGupta, A. (2000). Some results on the curse of dimensionality and sample size recommendations, Cal. Stat. Assoc. Bull., 50(199/200), 157–177.MATHGoogle Scholar
  11. Devroye, L. (1983). On arbitrarily slow rates of convergence in density estimation, Z. Wahr. Verw. Geb., 62(4), 475–483 .MATHCrossRefMathSciNetGoogle Scholar
  12. Devroye, L. (1987). A Course in Density Estimation, Birkhäuser, Boston.MATHGoogle Scholar
  13. Devroye, L. (1992). A note on the usefulness of superkernels in density estimation, Ann. Stat., 20,2037–2056.MATHCrossRefMathSciNetGoogle Scholar
  14. Devroye, L. and Penrod, C.S. (1984). The consistency of automatic kernel density estimates, Ann. Stat., 12(4), 1231–1249 .MATHCrossRefMathSciNetGoogle Scholar
  15. Devroye, L. and Lugosi, G. (1999). Variable kernel estimates: on the impossibility of tuning the parameters, in High Dimensional Probability, Ginè, E. and D. Mason (eds.) Vol. II, Birkhäuser, Boston, 405–424.Google Scholar
  16. Devroye, L. and Lugosi, G. (2000). Combinatorial Methods in Density Estimation, Springer, New York.Google Scholar
  17. Epanechnikov, V.A. (1969). Nonparametric estimates of a multivariate probability density, Theory Prob. Appl., 14,153–158.CrossRefGoogle Scholar
  18. Farrell, R.H. (1972). On the best attainable asymptotic rates of convergence in estimation of a density at a point, Ann. Math. Stat., 43,170–180.CrossRefMathSciNetMATHGoogle Scholar
  19. Gasser, T., Müller, H., and Mammitzsch, V. (1985). Kernels for nonparametric curve estimations, J.R. Stat. Soc. B, 47,238–252.Google Scholar
  20. Grenander, U. (1956). On the theory of mortality measurement, Skand. Aktuarietidskr, 39,70–96.MathSciNetGoogle Scholar
  21. Groeneboom, P. (1985). Estimating a monotone density, in Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, L. Le cam and R. A. O eslen (eds.) Wadsworth, Belmont, CA, 539–555.Google Scholar
  22. Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy functions, Prob. Theory Related Fields, 81,79–109.CrossRefMathSciNetGoogle Scholar
  23. Groeneboom, P. and Wellner, J. (2001). Computing Chernoff’s distribution, J. Comput. Graph. Stat., 10,388–400.CrossRefMathSciNetGoogle Scholar
  24. Hall, P. (1982). Cross-validation in density estimation, Biometrika, 69(2), 383–390 .MATHCrossRefMathSciNetGoogle Scholar
  25. Hall, P. (1983). Large sample optimality of least squares cross-validation in density estimation, Ann. Stat., 11(4), 1156–1174 .Google Scholar
  26. Hall, P. and Marron, J.S. (1988). Choice of kernel order in density estimation, Ann. Stat., 16,161–173.Google Scholar
  27. Hall, P., Minnotte, M.C., and Zhang, C., (2004). Bump hunting with non-Gaussian kernels, Ann. Stat., 32(5), 2124–2141 .MATHCrossRefMathSciNetGoogle Scholar
  28. Hall, P., Sheather, S.J., Jones, M.C., and Marron, J.S. (1991). On optimal data-based bandwidth selection in kernel density estimation, Biometrika, 78(2), 263–269 .MATHCrossRefMathSciNetGoogle Scholar
  29. Hall, P. and Wand, M.P. (1988). Minimizing mathcal L_1 distance in nonparametric density estimation, J. Multivar. Anal., 26(1), 59–88 .MATHCrossRefMathSciNetGoogle Scholar
  30. Hardle, W., Muller, M., Sperlich, S., and Werwatz, A. (2004). Nonparametric and Semiparametric Models, Springer, New York.Google Scholar
  31. Huber, P.J. (1985). Projection pursuit, with discussion, Ann. Stat., 13(2), 435–525 .MATHCrossRefMathSciNetGoogle Scholar
  32. Jones, M.C., Marron, J.S., and Sheather, S.J. (1996). A brief survey of bandwidth selection for density estimation, J. Am. Stat. Assoc., 91(433), 401–407 .MATHCrossRefMathSciNetGoogle Scholar
  33. Jones, M.C. and Sheather, S.J. (1991). Using nonstochastic terms to advantage in kernel-based estimation of integrated squared density derivatives, Stat. Prob. Lett., 11(6), 511–514 .MATHCrossRefMathSciNetGoogle Scholar
  34. Müller, H. (1984). Smooth optimum kernel estimators of densities, regression curves, and modes, Ann. Stat., 12,766–774.MATHCrossRefGoogle Scholar
  35. Parzen, E. (1962). On estimation of a probability density function and mode, Ann. Math. Stat., 33,1065–1076.CrossRefMathSciNetMATHGoogle Scholar
  36. Rao, B.L.S.P. (1969). Estimation of a unimodal density, Sankhya, Ser. A, 31,23–36.MATHMathSciNetGoogle Scholar
  37. Revesz, P. (1984). Density estimation, in Handbook of Statistics, Vol. 4, P.R. Krishnaiah and P.K. Sen (eds.), North-Holland, Amsterdam, 531–549.Google Scholar
  38. Rice, J. (1986). Bandwidth choice for differentiation, J. Multivar. Anal., 19(2), 251–264.MATHCrossRefMathSciNetGoogle Scholar
  39. Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function, Ann. Math. Stat., 27,832–835.CrossRefMathSciNetMATHGoogle Scholar
  40. Sager, T. (1975). Consistency in nonparametric estimation of the mode, Ann. Stat., 3,698–706.MATHMathSciNetGoogle Scholar
  41. Schuster, E.F. and Gregory, G.G. (1981). On the inconsistency of maximum likelihood density estimators, in Computer Science and Statistics, Proceedings of the 13th Symposium on Interface, W.F. Eddy Springer, New York, 295–298.Google Scholar
  42. Scott, D.W. (1992). Multivariate Density Estimation: Theory, Practice and Visualization, John Wiley, New York.MATHGoogle Scholar
  43. Scott, D.W. and Wand, M.P. (1991). Feasibility of multivariate density estimates, Biometrika, 78(1), 197–205 .CrossRefMathSciNetGoogle Scholar
  44. Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.MATHGoogle Scholar
  45. Stone, C.J. (1984). An asymptotically optimal window selection rule for kernel density estimates, Ann. Stat., 12(4), 1285–1297 .MATHCrossRefGoogle Scholar
  46. Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions, J.R. Stat. Soc. Ser. B, 36,111–147.MATHGoogle Scholar
  47. Stuetzle, W. and Mittal, Y. (1979). Some comments on the asymptotic behavior of robust smoothers, in Proceedings of the Heidelberg Workshop, T. Gasser and M. Rosenblatt (eds.), Lecture Notes in Mathematics, Springer, Berlin, 191–195.Google Scholar
  48. Thompson, J. and Tapia, R. (1990). Nonparametric Function Estimation, Modelling and Simulation, SIAM, Philadelphia.Google Scholar
  49. Venter, J. (1967). On estimation of the mode, Ann. Math. Stat., 38,1446–1455.CrossRefMathSciNetMATHGoogle Scholar
  50. Wang, X. and Zidek, J.V. (2005). Selecting likelihood weights by cross-validation, Ann. Stat., 33(2), 463–500 .MATHCrossRefMathSciNetGoogle Scholar
  51. Wegman, E. (1971). A note on the estimation of the mode, Ann. Math. Stat., 42,1909–1915.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations