Two-Sample Problems

  • Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Shift Model Welch Test Exact Variance Random Degree Null Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babu, G.J. and Padmanabhan, A.R. (2002). Resampling methods for the nonparametric Behrens-Fisher problem, Sankhya, special issue in memory of D. Basu, 64(3), Pt. I, 678–692.MathSciNetGoogle Scholar
  2. Best, D.J. and Rayner, J.C. (1987). Welch’s approximate solution to the Behrens- Fisher problem, Technometrics, 29(2), 205–210.MATHCrossRefMathSciNetGoogle Scholar
  3. Brunner, E. and Munzel, U. (2000). The nonparametric Behrens-Fisher problem: asymptotic theory and a small-sample approximation, Biometrical J., 1, 17–25.CrossRefMathSciNetGoogle Scholar
  4. Fligner, M.A. and Policello, G.E. (1981). Robust rank procedures for the Behrens-Fisher problem, J. Am. Stat. Assoc., 76, 162–168.CrossRefMathSciNetGoogle Scholar
  5. Ghosh, M. and Kim, Y.H. (2001). The Behrens-Fisher problem revisited: a Bayes-Frequentist synthesis, Can. J. Stat., 29(1), 5–17.MATHCrossRefMathSciNetGoogle Scholar
  6. Hajek, J. and Sidak, Z. (1967). Theory of Rank Tests, Academic Press, New York.MATHGoogle Scholar
  7. Hettmansperger, T. (1973). A large sample conservative test for location with unknown scale parameters, J. Am. Stat. Assoc., 68, 466–468.MATHCrossRefMathSciNetGoogle Scholar
  8. Hettmansperger, T. (1984). Statistical Inference Based on Ranks, John Wiley, New York.MATHGoogle Scholar
  9. Johnson, R.A. and Weerahandi, S. (1988). A Bayesian solution to the multivariate Behrens-Fisher problem, J. Am. Stat. Assoc., 83, 145–149.MATHCrossRefMathSciNetGoogle Scholar
  10. Lehmann, E.L. (1986). Testing Statistical Hypotheses, 2nd ed., John Wiley, New York.MATHGoogle Scholar
  11. Lehmann, E.L. and Romano, J. (2005). Testing Statistical Hypotheses, 3rd ed., Springer, New York.MATHGoogle Scholar
  12. Linnik, J.V. (1963). On the Behrens-Fisher problem, Bull. Inst. Int. Stat., 40, 833–841.MathSciNetGoogle Scholar
  13. Mann, H.B. and Whitney, D.R. (1947). On a test whether one of two random variables is stochastically larger than the other, Ann. Math. Stat., 18, 50–60.CrossRefMathSciNetGoogle Scholar
  14. Milton, R.C. (1964). An extended table of critical values of the Mann-Whitney (Wilcoxon) two-sample statistic, J. Am. Stat. Assoc., 59, 925–934.MATHCrossRefMathSciNetGoogle Scholar
  15. Pfanzagl, J. (1974). On the Behrens-Fisher problem, Biometrika, 61, 39–47.MATHCrossRefMathSciNetGoogle Scholar
  16. Randles, R.H. and Wolfe, D.A. (1979). Introduction to the Theory of Nonparametric Statistics, John Wiley, New York.MATHGoogle Scholar
  17. Scheffe, H. (1970). Practical solutions of the Behrens-Fisher problem, J. Am. Stat. Assoc., 65, 1501–1508.MATHCrossRefMathSciNetGoogle Scholar
  18. Serfling, R. (1980). Approximation Theorems of Mathematical Statistics, John Wiley, New York.MATHGoogle Scholar
  19. Wang, Y.Y. (1971). Probabilities of the type I errors of the Welch test for the Behrens-Fisher problem, J. Am. Stat. Assoc., 66, 605–608.CrossRefGoogle Scholar
  20. Welch, B. (1949). Further notes on Mrs. Aspin’s tables, Biometrika, 36, 243–246.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations