Asymptotic Efficiency in Testing

  • Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Asymptotic Optimality Cumulant Generate Function Large Deviation Rate Nonparametric Statistical Inference Asymptotic Optimality Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arcones, M. (1992). Large deviations for U statistics, J.Multivar. Anal., 42(2), 299–301.MATHCrossRefMathSciNetGoogle Scholar
  2. Bahadur, R.R. (1960). Stochastic comparison of tests, Ann. Math. Stat., 31, 276–295.CrossRefMathSciNetGoogle Scholar
  3. Bahadur, R.R. (1967). Rates of convergence of estimates and test statistics, Ann. Math. Stat., 38, 303–324.CrossRefMathSciNetGoogle Scholar
  4. Basu, D. (1956). On the concept of asymptotic efficiency, Sankhya, 17, 193–196.MATHMathSciNetGoogle Scholar
  5. Brown, L. (1971). Non-local asymptotic optimality of appropriate likelihood ratio tests, Ann. Math. Stat., 42, 1206–1240.CrossRefGoogle Scholar
  6. Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat., 23, 493–507.CrossRefMathSciNetGoogle Scholar
  7. Cohen, A., Kemperman, J.H.B., and Sackrowitz, H. (2000). Properties of likelihood inference for order restricted models, J. Multivar. Anal., 72(1), 50–77.MATHCrossRefMathSciNetGoogle Scholar
  8. DasGupta, A. (1998). Asymptotic Relative Efficiency, in Encyclopedia of Biostatistics, P. Armitage and T. Colton (eds.), Vol. I, John Wiley, New York.Google Scholar
  9. Hodges, J.L. and Lehmann, E.L. (1956). The efficiency of some nonparametric competitors of the t test, Ann. Math. Stat., 27, 324–335.CrossRefMathSciNetGoogle Scholar
  10. Kallenberg, W.C.M. (1983). Intermediate efficiency: theory and examples, Ann. Stat., 11(1), 170–182.MATHCrossRefMathSciNetGoogle Scholar
  11. Kallenberg, W.C.M. (1978). Asymptotic Optimality of Likelihood Ratio Tests, Mathematical Centre Tracts, Vol. 77,Mathematisch Centrum, Amsterdam.Google Scholar
  12. Perlman, M.D. and Wu, L. (1999). The emperor’s new tests, Stat. Sci., 14(4), 355–381.MATHMathSciNetGoogle Scholar
  13. Pitman, E.J.G. (1948). Lecture Notes on Nonparametric Statistical Inference, Columbia University, New York.Google Scholar
  14. Rubin, H. and Sethuraman, J. (1965). Bayes risk efficiency, Sankhya Ser.A, 27, 347–356.MATHMathSciNetGoogle Scholar
  15. Serfling, R. (1980). Approximation Theorems of Mathematical Statistics, John Wiley, New York.MATHGoogle Scholar
  16. Singh, K. (1984). Asymptotic comparison of tests—a review, in Handbook of Statistics, P.K. Sen and P.R. Krishnaiah (eds.), Vol. 4, North-Holland, Amsterdam, 173–184.Google Scholar
  17. van der Vaart, A. (1998). Asymptotic Statistics, Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations