The Trimmed Mean

  • Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Asymptotic Distribution Convex Combination Asymptotic Variance Extreme Order Statistic Double Exponential Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arcones, M. (1995). Asymptotic normality of multivariate trimmed means, Stat. Prob. Lett., 25(1), 43–53.MATHCrossRefMathSciNetGoogle Scholar
  2. Banerjee, M. and DasGupta, A. (2005). The 10-20-30-40 rule and its impressive efficiency properties, preprint.Google Scholar
  3. Bickel, P.J. and Lehmann, E.L. (1975). Descriptive statistics for nonparametric models, II: Location, Ann. Stat., 3(5), 1045–1069.MATHCrossRefMathSciNetGoogle Scholar
  4. Hogg, R. (1974). Adaptive robust procedures: a partial review and some suggestions for future applications and theory, J.Am. Stat. Assoc., 69, 909–927.MATHCrossRefMathSciNetGoogle Scholar
  5. Koul, H.L. and Susarla, V. (1983). Adaptive estimation in linear regression, Stat. Decisions, 1(4–5), 379–400.MATHMathSciNetGoogle Scholar
  6. Lehmann, E.L. (1983). Theory of Point Estimation, John Wiley, New York.MATHGoogle Scholar
  7. Stone, C.J. (1975). Adaptive maximum likelihood estimators of a location parameter, Ann. Stat., 3, 267–284.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations