M Estimates

  • Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Asymptotic Normality Asymptotic Variance Multivariate Normal Distribution Multiple Root Unique Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bose, A. (1998). Bahadur representation of M estimates, Ann. Stat., 26(2), 771–777.MATHCrossRefGoogle Scholar
  2. Carroll, R.J. (1978). On the asymptotic distribution of multivariate M estimates, J. Multivar Anal., 8(3), 361–371.MATHCrossRefGoogle Scholar
  3. He, X. and Shao, Q-M. (1996). A general Bahadur representation of M estimators and its application to linear regression with nonstochastic designs, Ann. Stat., 24(6), 2608–2630.MATHCrossRefMathSciNetGoogle Scholar
  4. Huber, P.J. (1964). Robust estimation of a location parameter, Ann. Math. Stat., 35, 73–101.CrossRefMathSciNetGoogle Scholar
  5. Huber, P.J. (1973). Robust regression; asymptotics, conjectures and Monte Carlo, Ann. Stat., 1, 799–821.MATHCrossRefMathSciNetGoogle Scholar
  6. Huber, P.J. (1981). Robust Statistics, John Wiley, New York.MATHGoogle Scholar
  7. Maronna, R. (1976). Robust M estimation of multivariate location and scatter, Ann. Stat., 4(1), 51–67.MATHCrossRefMathSciNetGoogle Scholar
  8. Sen, P.K. and Singer, J. (1993). Large Sample Methods in Statistics: An Introduction with Applications, Chapman and Hall, New York.Google Scholar
  9. Serfling, R. (1980). Approximation Theorems of Mathematical Statistics, John Wiley, New York.MATHGoogle Scholar
  10. van der Vaart, A. (1998). Asymptotic Statistics, Cambridge University Press, Cambridge.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations