Saddlepoint Approximations

  • Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Tail Probability Quantile Approximation Saddlepoint Approximation Edgeworth Expansion Tail Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arevalillo, J. (2003). Inverting a saddlepoint approximation, Stat. Prob. Lett., 61, 421–428.MATHCrossRefMathSciNetGoogle Scholar
  2. Barndorff-Nielsen, O.E. (1983). On a formula for the distribution of the maximum likelihood estimator, Biometrika, 70, 343–365.MATHCrossRefMathSciNetGoogle Scholar
  3. Barndorff-Nielsen, O.E. and Cox, D.R. (1979). Edgeworth and saddlepoint approximations with statistical applications, J.R. Stat. Soc. Ser. B, 41, 279–312.MATHMathSciNetGoogle Scholar
  4. Barndorff-Nielsen, O.E. and Cox, D.R. (1989). Asymptotic Techniques for Use in Statistics, Chapman and Hall, London.MATHGoogle Scholar
  5. Daniels, H.E. (1954). Saddlepoint approximations in statistics, Ann. Math. Stat., 25, 631–650.CrossRefMathSciNetMATHGoogle Scholar
  6. Daniels, H.E. (1987). Tail probability approximations, Int. Stat. Rev., 55, 37–48.MATHMathSciNetCrossRefGoogle Scholar
  7. Good, I.J. (1957). Saddlepoint methods for the multinomial distribution, Ann. Math. Stat., 28, 861–881.CrossRefMathSciNetGoogle Scholar
  8. Goutis, C. and Casella, G. (1999). Explaining the saddlepoint approximation, Am. Stat., 53(3), 216–224.CrossRefMathSciNetGoogle Scholar
  9. Hall, P. (1983a). Inverting an Edgeworth expansion, Ann. Stat., 11(2), 569–576.MATHCrossRefGoogle Scholar
  10. Hall, P. (1983b). Chi-square approximations to the distribution of a sum of independent random variables, Ann. Prob., 11, 1028–1036.MATHCrossRefGoogle Scholar
  11. Jensen, J.L. (1995). Saddlepoint Approximations, Oxford University Press, Oxford.Google Scholar
  12. Kolassa, J. (2003). Multivariate saddlepoint tail probability approximations, Ann. Stat., 31(1), 274–286.MATHCrossRefMathSciNetGoogle Scholar
  13. Lugannani, R. and Rice, S. (1980). Saddlepoint approximation for the distribution of the sum of independent random variables, Adv. Appl. Prob., 12, 475–490.MATHCrossRefMathSciNetGoogle Scholar
  14. Ma, C. and Robinson, J. (1998). Saddlepoint approximation for sample and bootstrap quantiles, Aust. N. Z. J. Stat., 40(4), 479–486.MATHCrossRefMathSciNetGoogle Scholar
  15. McCullagh, P. (1987). Tensor Methods in Statistics, Chapman and Hall, London.MATHGoogle Scholar
  16. Olver, F.J. (1997). Asymptotics and Special Functions, A.K. Peters Ltd., Wellesley, MA.MATHGoogle Scholar
  17. Reid, N. (1988). Saddlepoint methods and statistical inference, Stat. Sci., 3(2), 213–227.MATHCrossRefGoogle Scholar
  18. Wood, A.T.A. (2000). Laplace/saddlepoint approximations, in Symposium in Honour of Ole E. Barndorff-Nielsen, Memoirs, Vol. 16, University of Aarhus, 110–115.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations