Interlude: Assessing the Effects of Blocking

Part of the Springer Texts in Statistics book series (STS)

In Chapter 3 we modeled blocks as a random factor, one in which the levels that actually appear in the experiment are considered a random sample from all levels. However, the concept of “random factor” can sometimes be puzzling, as most of the time we do not actually take a random sample of blocks. Rather, we choose blocks to represent a wide variety of situations. In a sense the concept of a random factor is a fallacy (see Section 3.8.4). That is, the important implication is that blocking induces a correlation in the design. This only makes sense, as experimental units within a particular block should behave similarly, and hence will be correlated. This correlation can be modeled directly, or can arise as a byproduct of assuming that blocks are a random effect. In either case we end up with the similar analyses.

Whether blocks are random or are fixed, the important point is that a correlation structure is induced. As far as the model calculations go – variances, covariances, etc, they are quite similar.


Random Factor Experimental Unit Randomization Test Technical Note Random Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations