Skip to main content

Applications to Astrophysics Problems

  • Chapter
Special Functions for Applied Scientists
  • 2155 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Information theory and statistical distribution theory

    Google Scholar 

  • Mathai, A.M. and Rathie, P.N. (1977): Probability and Statistics, Macmillan, London.

    Google Scholar 

  • Mathai, A.M. and Rathie, P.N. (1975): Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications, Wiley Halsted, New York and Wiley Eastern, New Delhi.

    MATH  Google Scholar 

  • Mathai, A.M. (1999): An Introduction to Geometrical Probability: Distributional Aspects with Applications, Gordon and Breach, Amsterdam. B. Generalized special functions of mathematical physics

    Google Scholar 

  • Mathai, A.M. and Saxena, R.K. (1973): Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Springer-Verlag, Heidelberg.

    MATH  Google Scholar 

  • Mathai, A.M. and Saxena, R.K.(1978): The H-function with Applications in Statistics and Other Disciplines, Wiley Halsted, New York and Wiley Eastern, New Delhi.

    MATH  Google Scholar 

  • Mathai, A.M. (1993): A Handbook of Generalized Special Functions for Statistical and Physical Sciences, Clarendon Press, Oxford. C. Matrix transformations and functions of matrix argument

    MATH  Google Scholar 

  • Mathai, A.M. and Provost S.B. (1992): Quadratic Forms in Random Variables: Theory and Applications, Marcel Dekker, New York.

    MATH  Google Scholar 

  • Mathai, A.M., Provost, S.B., and Hayakawa, T. (1995): Bilinear Forms and Zonal Polynomials, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Mathai, A.M. (1997): Jacobians of Matrix Transformations and Functions of Matrix Argument, World Scientific, New York. D. Fractional calculus

    MATH  Google Scholar 

  • Srivastava, H.M. and Saxena, R.K. (2001): Operators of fractional integration and their applications. Applied Mathematics and Computation, 118, 1-52. E. Stable distributions

    Article  MATH  MathSciNet  Google Scholar 

  • Jose, K.K. and Seetha Lekshmi, V. (2004): Geometric Stable Distributions: Theory and Applications, A SET Publication, Science Educational Trust, Palai. F. Gamma functions

    Google Scholar 

  • Chaudry, M.A. and Zubair, S.M. (2002): On a Class of Incomplete Gamma Functions with Applications, Chapman & Hall /CRC, New York. Section 9.1

    Google Scholar 

  • Boltzmann, L.: Entropie und Wahrscheinlichkeit (1872-1905). Ostwalds Klassiker der Exakten Wissenschaften, Band 286, Verlag Harri Deutsch, Frankfurt am Main 2002.

    Google Scholar 

  • Planck, M.: Die Ableitung der Strahlungsgesetze (1895-1900): Sieben Abhandlungen aus dem Gebiet der Elektrischen Strahlungstheorie. Ostwalds Klassiker der Exakten Wissenschaften, Band 206, Verlag Harri Deutsch, Frankfurt am Main 2001.

    Google Scholar 

  • Einstein, A. und von Smoluchowski, M.: Untersuchungen ueber die Theorie der Brownschen Bewegung; Abhandlung ueber die Brownsche Bewegung und verwandte Erscheinungen. Ostwalds Klassiker der Exakten Wissenschaften, Reprint der Baende 199 und 207, Verlag Harri Deutsch, Frankfurt am Main 2001.

    Google Scholar 

  • Pais, A. (1982): Subtle is the Lord...: The Science and the Life of Albert Einstein, Oxford University Press, Oxford.

    Google Scholar 

  • Bach, A. (1990): Boltzmann’s probability distribution of 1877. Archive for History of Exact Sciences, 41(1),1–40.

    MATH  MathSciNet  Google Scholar 

  • Nicolis, G. and Prigogine, I. (1977): Self-Organization in Nonequilibrium Systems, Wiley, New York.

    MATH  Google Scholar 

  • Haken, H. (2000): Information and Self-Organization: A Macroscopic Approach to Complex Systems, Springer-Verlag, Berlin, Heidelberg.

    MATH  Google Scholar 

  • Tsallis, C. and Gell-Mann, M. (Eds.) (2004): Nonextensive Entropy: Interdisciplinary Applications, Oxford University Press, New York.

    MATH  Google Scholar 

  • Haubold, H.J., Mathai, A.M., and Saxena, R.K. (2004): Boltzmann-Gibbs entropy versus Tsallis entropy: Recent contributions to resolving the argument of Einstein concerning “Neither Herr Boltzmann nor Herr Planck has given a definition of W”? Astrophysics and Space Science, 290, 241–245.

    Article  MATH  ADS  Google Scholar 

  • Masi, M.(2005): A step beyond Tsallis and Renyi entropies. Physics Letters, A338, 217–224. Section 9.2

    ADS  MathSciNet  Google Scholar 

  • Emden, R. (1907): Gaskugeln: Anwendungen der Mechanischen Waermetheorie auf Kosmologische und Meteorologische Probleme, Verlag B.G. Teubner, Leipzig und Berlin.

    MATH  Google Scholar 

  • Chandrasekhar, S. (1967): An Introduction to the Study of Stellar Structure, Dover, New York.

    Google Scholar 

  • Stein, R.F. and Cameron, A.G.W. (Eds.) (1966): Stellar Evolution, Plenum Press, New York.

    Google Scholar 

  • Kourganoff, V. (1973): Introduction to the Physics of Stellar Interiors, D. Reidel Publishing Company, Dordrecht.

    Google Scholar 

  • Bethe, H.A. (1973): Energy production in stars. Science, 161, 541–547.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S. (1984): On stars, their evolution and their stability. Reviews of Modern Physics, 56, 137–147.

    Article  ADS  Google Scholar 

  • Haubold, H.J. and Mathai, A.M. (1994): Solar nuclear energy generation and the chlorine solar neutrino experiment. in Conference Proceedings No. 320: Basic Space Science, American Institute of Physics, New York, pp. 102–116.

    Google Scholar 

  • Haubold, H.J. and Mathai, A.M. (1995): Solar structure in terms of Gauss’ hypergeometric function. Astrophysics and Space Science, 228, 77–86.

    Article  MATH  ADS  Google Scholar 

  • Clayton, D.D. (1986): Solar structure without computers. American Journal of Physics, 54(4), 354–362. Section 9.3

    Article  ADS  MathSciNet  Google Scholar 

  • Davis Jr., R. (2003): A half-century with solar neutrinos. Reviews of Modern Physics, 75, 985–994.

    Article  ADS  Google Scholar 

  • Davis Jr., R. 1996): A review of measurements of the solar neutrino flux and their variation. Nuclear Physics, B48, 284–298.

    Google Scholar 

  • Smirnov, A.Yu. (2003): The MSW effect and solar neutrinos. In Tenth International Workshop on Neutrino Telescopes, Proceedings, ed. Milla Baldo Ceolin, Venezia, March 11-14, 2003, Instituto Veneto di Scienze, Lettere ed Arti, Campo Santo Stefano, edizionni papergraf, pp. 23–43.

    Google Scholar 

  • Haubold, H.J. and Gerth, E. (1990): On the Fourier spectrum analysis of the solar neutrino capture rate. Solar Physics, 127, 347–356.

    Article  ADS  Google Scholar 

  • Haubold, H.J. (1998): Wavelet analysis of the new solar neutrino capture rate data for the Homestake experiment. Astrophysics and Space Science, 258, 201–218.

    Article  ADS  Google Scholar 

  • Dicke, R.H. (1978): Is there as chronometer hidden deep in the Sun? Nature, 276, 676–680.

    Article  ADS  Google Scholar 

  • Kononovich, E.V. (2004): Mean variations of the solar activity cycles: analytical representations. In Proceedings XXVII Seminar on Physics of Auroral Phenomena, Apatity, Kola Science Center, Russian Academy of Science 2004, pp. 83–86.

    Google Scholar 

  • Burlaga, L.F. and Vinas, A.F. (2005): Triangle for the entropic index q of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere. Physica, A356, 375–384.

    ADS  Google Scholar 

  • Siegert, S., Friedrich, R., and Peinke, J. (1998): Analysis of data sets of stochastic systems. Physics Letters, A243, 275–280.

    ADS  MathSciNet  Google Scholar 

  • Risken, H. (1996): The Fokker-Planck Equation, Springer-Verlag, Berlin Heidelberg.

    MATH  Google Scholar 

  • Frank, T.D. (2005): Nonlinear Fokker-Planck Equations, Springer-Verlag, Berlin Heidelberg. Section 9.4

    MATH  Google Scholar 

  • Balescu, R. (2000): Statistical Dynamics: Matter out of Equilibrium, Imperial College Press, London.

    Google Scholar 

  • Van Kampen, N.G. (2003): Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam.

    Google Scholar 

  • Balescu, R. (2005): Aspects of Anomalous Transport in Plasmas, Institute of Physics Publishing, Bristol and Philadelphia. Section 9.5

    Book  Google Scholar 

  • West, B.J., Bologna, M., and Grigolini, P.(2005): Physics of Fractal Operators, Springer-Verlag, New York.

    Google Scholar 

  • Stanislavsky, A.A. (2004): Probability interpretation of the integral of fractional order. Theoretical and Mathematical Physics, 138, 418–431. Section 9.6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cohen, E.G.D. (2005): Boltzmann and Einstein: statistics and dynamics - an unsolved problem. Pramana Journal of Physics, 64, 635–643.

    Article  ADS  Google Scholar 

  • Boon, J.P. and Tsallis, C. (Eds.) (2005): Nonextensive Statistical Mechanics: New Trends, New Perspectives. Europhysics News, 36, 183–231.

    Google Scholar 

  • Tsallis, C. (2004): Dynamical scenario for nonextensive statistical mechanics. Physica, A340, 1–10.

    ADS  MathSciNet  Google Scholar 

  • Saxena, R.K., Mathai, A.M., and Haubold, H.J. (2004): Astrophysical thermonuclear functions for Boltzmann-Gibbs and Tsallis statistics. Physica, A344, 649–656.

    ADS  MathSciNet  Google Scholar 

  • Tsallis, C., Gell-Mann, M., and Sato, Y. (2005): Asymptotically scale-invariant occupancy of phase space makes the entropy S q extensive. Proceedings of The National Academy of Sciences of the USA, 102, 15377–15382. Section 9.7

    Google Scholar 

  • Ben-Avraham, D. and Havlin S. (2000): Diffusion and Reactions in Fractals and Disordered Systems, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Fowler, W.A. (1984): Experimental and theoretical nuclear astrophysics: The quest for the origin of the elements. Reviews of Modern Physics, 56, 149–179.

    Article  ADS  Google Scholar 

  • Haubold, H.J. and Mathai, A.M. (1995): A heuristic remark on the periodic variation in the number of solar neutrinos detected on Earth. Astrophysics and Space Science, 228, 113–134.

    Article  ADS  Google Scholar 

  • Haubold, H.J. and Mathai, A.M. (1985): The Maxwell-Boltzmannian approach to the nuclear reaction rate theory. Progress of Physics, 33, 623–644.

    Google Scholar 

  • Anderson, W.J., Haubold, H.J., and Mathai, A.M. (1994): Astrophysical thermonuclear functions. Astrophysics and Space Science, 214, 49–70.

    Article  MATH  ADS  Google Scholar 

  • Haubold, H.J. and Mathai, A.M. (2004): The fractional kinetic equation and thermonuclear functions. Astrophysics and Space Science, 273, 53–63.

    Article  ADS  Google Scholar 

  • Tsallis, C. (2004): What should a statistical mechanics satisfy to reflect nature? Physica, D193, 3–34. Section 9.8

    ADS  MathSciNet  Google Scholar 

  • Metzler, R. and Klafter, J. (2000): The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Physics Reports, 339, 1–77.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Metzler, R. and Klafter, J. (2004): The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Math. Gen., 37, R161-R208.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Saxena, R.K., Mathai, A.M., and Haubold, H.J. (2004): On generalized fractional kinetic equations. Physica A, 344, 657–664.

    Article  ADS  MathSciNet  Google Scholar 

  • Saxena, R.K., Mathai, A.M., and Haubold, H.J. (2004): Unified fractional kinetic equation and a fractional diffusion equation. Astrophysics and Space Science, 290, 299–310. Section 9.9

    Article  ADS  Google Scholar 

  • Haken, H. (2004): Synergetics: Introduction and Advanced Topics, Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  • Wilhelmsson, H. and Lazzaro, E. (2001): Reaction-Diffusion Problems in the Physics of Hot Plasmas, Institute of Physics Publishing, Bristol and Philadelphia.

    Book  Google Scholar 

  • Murray, J.D. (2003): Mathematical Biology. Volume I: An Introduction. Volume II: Spatial Models and Biomedical Applications, Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  • Adamatzky, A., De Lacy Costello, B., and Asai, T. (2005): Reaction-Diffusion Computers, Elsevier, Amsterdam.

    Google Scholar 

  • Vlad, M.O. and Ross, J. (2002): Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: Applications to the theory of Neolithic transition. Physical Review, E66, 061908-1 – 061908-11.

    ADS  MathSciNet  Google Scholar 

  • Seki, K., Wojcik, M., and Tachiya, M. (2003): Fractional reaction-diffusion equations. Journal of Chemical Physics, 119, 2165–2170.

    Article  ADS  Google Scholar 

  • Henry, B.I. and Wearne, S.L. (2000): Fractional reaction-diffusion. Physica A, 276, 448–455.

    Article  ADS  MathSciNet  Google Scholar 

  • Del-Castillo-Negrete, D., Carreras, B.A., and Lynch, V. (2003): Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach. Physical Review Letters, 91, 018302-1 – 018302-4.

    Article  ADS  Google Scholar 

  • Henry, B.I., Langlands, T.A.M., and Wearne, S.L. (2005): Turing pattern formation in fractional activator-inhibitor systems. Physical Review, E72, 026101-1 – 026101-14.

    ADS  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Applications to Astrophysics Problems. In: Special Functions for Applied Scientists. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75894-7_9

Download citation

Publish with us

Policies and ethics