Applications to Order Statistics


Order Statistic Unbiased Estimator Distribution Theory Probability Mass Function Bivariate Normal Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahsanullah, M. and Nevzorov, V.B. (2000). Some distributions of induced record values, Biometrical Journal, 42, 1069–1081.MATHCrossRefMathSciNetGoogle Scholar
  2. Arnold, B.C., Balakrishnan, N. and Nagaraja, H.N. (1998). Records, Wiley, New York.MATHGoogle Scholar
  3. Balakrishnan, N., Ahsanullah M. and Chan, P. S. (1995). On the logistic record values and associated inference, Journal of Applied Statistical Science, 2, 233–248.MATHMathSciNetGoogle Scholar
  4. Balasubramanian, K. and Beg, M.I. (1997). Concomitants of order statistics in Morgenstern type bivariate exponential distribution, Journal of Applied Statistical Science, 5, 233–245.MATHMathSciNetGoogle Scholar
  5. Barnett, Y., Green, P.J. and Robinson, A. (1976). Concomitants and correlation estimates, Biometrika, 63, 323–328.MATHCrossRefGoogle Scholar
  6. Begum, A.A. and Khan, A.H. (2000a). Concomitants of order statistics from Marshall and Olkin’s bivariate Weibull distribution, Calcutta Statistical Association Bulletin, 50, 65–70.MATHMathSciNetGoogle Scholar
  7. Begum, A.A. and Khan, A.H. (2000b). Concomitants of order statistics from Gumbel’s bivariate logistic distribution, Journal of the Indian Society for Probability and Statistics, 5, 51–64.Google Scholar
  8. Bhattacharya, P.K. (1974). Convergence of sample paths of normalized sums of induced order statistics, Annals of Statistics, 2, 1034–1039.MATHCrossRefMathSciNetGoogle Scholar
  9. Castillo, E. (1988). Extreme Value Theory in Engineering, Academic Press, New York.MATHGoogle Scholar
  10. Chacko, M. and Thomas, P.Y. (2004). Estimation of a parameter of Morgenstern type bivariate uniform distribution based on concomitants of order statistics and concomitants of record values, Journal of the Kerala Statistical Association, 15, 13–26.Google Scholar
  11. Chacko, M. and Thomas, P. Y. (2005). Concomitants of record values arising from Morgenstern type bivariate logistic distribution and some of their applications in parameter estimation, Metrika (to appear).Google Scholar
  12. Coles, S.G. and Tawn, A. J. (1994). Statistical methods for multivariate extremes: An application to structural design, Applied Statistics, 43, 1–48.MATHCrossRefGoogle Scholar
  13. David, H. A.(1981): Order Statistics, Second edition, Wiley, New York.MATHGoogle Scholar
  14. David, H.A. and Nagaraja, H. N. (2003). Order Statistics, 3rd edition, John Wiley, New York.MATHGoogle Scholar
  15. Gill, P.S., Tiku, M.L. and Vaughan, D.C. (1990). Inference problems in life testing under multivariate normality, Journal of Applied Statistics, 17, 133–149.CrossRefGoogle Scholar
  16. Harrel, F.E. and Sen., P.K. (1979). Statistical inference for censored bivariate normal distributions based on induced order statistics, Biometrika, 66, 293–298.CrossRefMathSciNetGoogle Scholar
  17. Houchens, R. L. (1984). Record Value Theory and Inference, Ph. D. Dissertation, University of California, Riverside, California.Google Scholar
  18. Kotz, S., Balakrishnan, N. and Johnson, N. L. (2000). Continuous Multivariate Distributions, John Wiley, New York.MATHCrossRefGoogle Scholar
  19. Scaria, J. and Nair, N.U. (1999). On concomitants of order statistics from Morgenstern family, Biometrical Journal, 41, 483–489.MATHCrossRefGoogle Scholar
  20. Spruill, N.L. and Gastwirth, J. (1982). On the estimation of correlation coefficient from grouped data, Journal of American Statistical Association, 77, 614–620.MATHCrossRefMathSciNetGoogle Scholar
  21. Yang, S.S. (1977). General distribution theory of the concomitants of order statistics, Annals of Statistics, 5, 996–1002.MATHCrossRefMathSciNetGoogle Scholar
  22. Yeo, W.B. and David, H.A. (1984). Selection through an associated characteristic with application to the random effects model, Journal of American Statistical Association, 79, 399–405.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations