Applications to Density Estimation


Orthogonal Polynomial Legendre Polynomial Jacobi Polynomial Base Density Laguerre Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexits, G. (1961). Convergence Problems of Orthogonal Series, Pergamon Press, New York.MATHGoogle Scholar
  2. Barndorff-Nielsen, O. and Cox, D. R. (1979). Edgeworth and Saddlepoint Approximations with Statistical Applications, Journal of the Royal Statistical Society, Series B, 41, 279–312.MATHMathSciNetGoogle Scholar
  3. Burden, R. L. and Faires, J. D. (1993). Numerical Analysis, 5th Ed. Brooks/ Cole, New York.MATHGoogle Scholar
  4. Devroye, L. (1989). On random variate generation when only moments or Fourier coefficients are known, Mathematics and Computers in Simulation, 31, 71–89.MATHCrossRefMathSciNetGoogle Scholar
  5. Devroye, L. and Györfi, L. (1985). Nonparametric Density Estimation, The L 1 View, Wiley, New York.Google Scholar
  6. Elderton, W. P. and Johnson, N. L. (1969). Systems of Frequency Curves, Cambridge University Press.Google Scholar
  7. Johnson, N. L. and Kotz, S. (1970). Distributions in Statistics: Continuous Univariate Distributions-2, Wiley, New YorkGoogle Scholar
  8. Jones, W. B. and Ranga, A. S., Eds. (1998). Orthogonal Functions, Moment Theory, and Continued Fractions, Theory and Applications, Marcel Dekker, New York.MATHGoogle Scholar
  9. Mathai, A. M. and Provost, S. B. (1992). Quadratic Forms in Random Variables, Theory and Applications, Marcel Dekker, New York.MATHGoogle Scholar
  10. Mathai, A. M. and Saxena, R. K. (1978). The H-function with Applications in Statistics and Other Disciplines, Wiley Halsted, New York.MATHGoogle Scholar
  11. Provost, S. B. and Rudiuk, E. M. (1995). Moments and densities of tests statistics for covariance structures, International Journal of Mathematical and Statistical Sciences, 4, 85–104.MATHMathSciNetGoogle Scholar
  12. Provost, S. B. and Cheong, Y.-H. (2000). On the distribution of linear combinations of the components of a Dirichlet random vector, The Canadian Journal of Statistics, 28, 417–425.MATHCrossRefMathSciNetGoogle Scholar
  13. Rao, C. R. (1965). Linear Statistical Inference and Its Applications, Wiley, New York.MATHGoogle Scholar
  14. Reid, N. (1988). Saddlepoint methods and statistical inference, Statistical Science, 3, 213–227.MATHCrossRefMathSciNetGoogle Scholar
  15. Sansone, G. (1959). Orthogonal Functions, Interscience Publishers, New York.MATHGoogle Scholar
  16. Smith, P. J. (1995). A recursive formulation of the old problem of obtaining moments from cumulants and vice versa, The American Statistician, 49, 217–219.CrossRefADSMathSciNetGoogle Scholar
  17. Solomon, H. and Stephens, M.A. (1978). Approximations to density functions using Pearson curves, Journal of the American Statistical Association, 73, 153–160.CrossRefGoogle Scholar
  18. Szegö, G. (1959). Orthogonal Polynomials, American Mathematical Society, New York.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations