Advertisement

Ecosystem Effects Workgroup Report

  • Bas W Ibelings
  • John W Fournie
  • Elizabeth D Hilborn
  • Geoffrey A Codd
  • Michael Coveney
  • Juli Dyble
  • Karl Havens
  • Bas W Ibelings
  • Jan Landsberg
  • Wayne Litaker
  • Bas W Ibelings
  • Karl Havens
  • Geoffrey A Codd
  • Juli Dyble
  • Jan Landsberg
  • Michael Coveney
  • John W Fournie
  • Elizabeth D Hilborn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 619)

Keywords

Zebra Mussel Cyanobacterial Bloom Microcystis Aeruginosa Dreissena Polymorpha Cyanobacterial Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amorim A, Vasconcelos V (1999) Dynamics of microcystins in the mussel Mytilus galloprovincialis. Toxicon 37:1041–1052PubMedCrossRefGoogle Scholar
  2. Babcock–Jackson L, Carmichael WW, Culver DA (2002) Dreissenid musselsincrease exposure of benthic and pelagic organisms to toxic microcystins. Verh Internat Verein Limnol 28:1082–1085Google Scholar
  3. Baganz D, Staaks G, Steinberg C (1998) Impact of the cyanobacterial toxin microcystin–LR on behaviour of zebrafish, Danio rerio. Water Res 32:948–952CrossRefGoogle Scholar
  4. Best JH, Pflugmacher S, Wiegand C, Eddy FB, Metcalf JS, Codd GA (2002). Effects of enteric bacterial and cyanobacterial lipopolysaccharides , and of microcystin–LR on glutathione S–tranfersase activities in zebra fish (Danio rerio). Aquatic Toxicology 60: 223–231.PubMedCrossRefGoogle Scholar
  5. Best JH, Eddy FB, Codd GA (2003). Effects of Microcystis cells, cell extracts and lipopolysaccharide on drinking and liver function in rainbow trout Oncorhynchus mykiss Walbaum. Aquatic Toxicology 64:419–426.PubMedCrossRefGoogle Scholar
  6. Burgess C (2001). A wave of momentum for toxic algae study. Environ Health Perspect 109:160–1.CrossRefGoogle Scholar
  7. Bury NR, Eddy FB, Codd GA (1995) The effects of the cyanobacterium Microcystis–aeruginosa, the cyanobacterial hepatotoxin microcystin–LR and ammonia on growth–rate and ionic regulation of brown trout. J Fish Biol 46:1042–1054Google Scholar
  8. Carmichael WW, Biggs D F (1978). Muscle sensitivity differences in two avain species to anatoxin–a produced by the freshwater cyanophyte Anabaena flos–aquae$. $Canadian Journal of Zoology 56:510–512.PubMedCrossRefGoogle Scholar
  9. Carmichael WW, Evans WR, Yin QQ, Bell P, Moczydlowski E (1997). Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63:3104–3110.PubMedGoogle Scholar
  10. Codd GA, Lindsay J, Young FM, Morrison LF, Metcalf JS (2005). Harmful cyanobacteria: From mass mortalities to management measures. In: Harmful Cyanobacteria, Eds. J. Huisman, H.C.P. Matthijs and P.M. Visser, Springer, Dordrecht, The Netherlands, pp. 1–23.CrossRefGoogle Scholar
  11. Cox PA, Banack SA, Murch SJ (2003). Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. PNAS 100: 13380–13383PubMedCrossRefGoogle Scholar
  12. De Maagd PGJ, Hendriks AJ, Seinen W, Sijm D (1999) pH–dependent hydrophobicity of the cyanobacterial toxin microcystin–LR. Water Res 33:677–680CrossRefGoogle Scholar
  13. Dionisio Pires LM, Karlsson KM, Meriluoto JAO, Visser PM, Siewertsen K, Van Donk E, Ibelings BW Assimilation and depuration of microcystin–LR by the zebra mussel, Dreissena polymorpha. Aquat Toxicol. 2004;69:385–396.CrossRefGoogle Scholar
  14. Falconer IR, Humpage AR. 1996. Tumor promotion by cyanobacterial toxins. Phycologia 35:74–79.CrossRefGoogle Scholar
  15. Fischer WJ, Dietrich DR (2000). Pathological and biochemical characterization of microcystin–induced hepatopancreas and kidney damage in carp (Cyprinus carpio). Toxicol Appl Pharmacol 164:73–81PubMedCrossRefGoogle Scholar
  16. Fujiki H, Suganuma M, Hakii H, Bartolini G, Moore RE, Takegama S, Sugimura T. (1984). A two–stage mouse skin carcinogenesis study of lyngbyatoxin A. J Cancer Res Clin Oncol 108: 174–176.PubMedCrossRefGoogle Scholar
  17. Gray JS (2002). Biomagnification in marine systems: the perspective of an ecologist. Mar Poll Bull 45: 46–52CrossRefGoogle Scholar
  18. Henriksen P, Carmichael WW, An JS, Moestrop O (1997). Detection of an anatoxin–a(s)–like anticholinesterase in natural blooms and cultures of Cyanobacteria/blue–green algae from Danish lakes and in the stomach contents of poisoned birds. Toxicon 35:901–913PubMedCrossRefGoogle Scholar
  19. Ibelings BW, Bruning K, de Jonge J, Wolfstein K, Pires LMD, Postma J, Burger T (2005). Distribution of microcystins in a lake food web: No evidence for biomagnification Microb Ecol 49:487–500PubMedCrossRefGoogle Scholar
  20. Jang MH, Ha K, Joo GJ, Takamura N (2003)Toxin production of cyanobacteria is increased by exposure to zooplankton Freshw Biol 48:1540–1550Google Scholar
  21. Jang MH, Ha K, Lucas MC, Joo GJ, Takamura N (2004). Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish. Aquatic Toxicol 68: 51–59.CrossRefGoogle Scholar
  22. Lürling M (2003) Daphnia growth on microcystin–producing and microcystin–free Microcystis aeruginosa in different mixtures with the green alga Scenedesmus obliquus. Limnol Oceanogr 48:2214–2220.CrossRefGoogle Scholar
  23. Lürling M, van der Grinten E (2003) Life–history characteristics of Daphnia exposed to dissolved microcystin–LR and to the cyanobacterium Microcystis aeruginosa with and without microcystins. Environ Toxicol Chem 22:1281–1287.PubMedCrossRefGoogle Scholar
  24. Karjalainen M, Reinikainen M, Spoof L, Miriluoto JAO, Sivonen K, Viitasalo M (2005). Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: Consequences for pike larvae and mysid shrimps. Environ Toxicol 20:354–362PubMedCrossRefGoogle Scholar
  25. Krienitz L, Ballot A, Kotut K, Wiegand C, Putz S, Metcalf JS, Codd GA, Pflugmacher S (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of lesser flamingos at Lake Bogoria, Kenya. FEMS Microbiol Ecol 43:141–148CrossRefPubMedGoogle Scholar
  26. Kotak BG, Zurawell RW, Prepas EE, Holmes CFB (1996) Microcystin–LR concentration in aquatic food web compartments from lakes of varying trophic status. Can J Fish Aquat Sci 53:1974–1985CrossRefGoogle Scholar
  27. Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390CrossRefGoogle Scholar
  28. Matsunaga H, Harada KI, Senma M, Ito Y, Yasuda N, Ushida S, Kimura Y (1999). Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan: Sudden appearance of toxic cyanobacteria. Nat Toxins 7:81–88PubMedCrossRefGoogle Scholar
  29. Paerl HW, Pinckney JL, Fear JM and Peierls BM (1998). Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Marine Ecology Progress Series 166:17–25.CrossRefGoogle Scholar
  30. Paerl HW, Fulton III RS, Moisander PH and Dyble J (2001). Harmful algal blooms with an emphasis on cyanobacteria. TheScientificWorld Journal 1:76–113.Google Scholar
  31. Palmer MA, Covich AP, Lake S, Biro P, Brooks, JJ, Cole J, Dahm C, Gibert J, Goedkoop W, Martens K, Verhoeven J and van de Bund WJ (2000). Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. BioScience 50:1062–1075.CrossRefGoogle Scholar
  32. Pflugmacher S (2004). Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin–LR. Aquat Toxicol 70:169–178PubMedCrossRefGoogle Scholar
  33. Raikow DF, Sarnelle O, Wilson, AE, Hamilton, SK (2004) Dominance of the noxious cyanobacterium Microcystis aeruginosa in low–nutrient lakes is associated with exotic zebra mussels. Limnol Oceanogr 49:482–487CrossRefGoogle Scholar
  34. Rodger HD, Turnbull T, Edwards C, Codd GA (1994) Cyanobacterial (blue–green–algal) bloom associated pathology in brown trout, Salmo–trutta L, in Loch Leven, Scotland. J Fish Dis 17:177–181CrossRefGoogle Scholar
  35. Rohrlack T, Christoffersen K, Kaebernick M, Neilan BA (2004). Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Appl Environ Microbiol 70: 5047–5050PubMedCrossRefGoogle Scholar
  36. Rohrlack T, Christoffersen K, Dittmann E, Nogueira I, Vasconcelos V, Börner T (2005). Ingestion of microcystins by Daphnia: Intestinal uptake and toxic effects. Limnol Oceanogr 50: 440–448CrossRefGoogle Scholar
  37. Scheffer M, Carpenter SR (2003). Catastrophic regime shifts in ecosystems: linking theory to observation TREE 18: 648–656Google Scholar
  38. Taylor RL, Caldwell GS, Bentley MG (2005). Toxicity of algal–derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect? Aquatic Toxicol 74: 20–31Google Scholar
  39. Tencalla F, Dietrich D (1997). Biochemical characterization of microcystin toxicity in rainbow trout (Oncorhynchus mykiss). Toxicon 35: 583–595 APR 1997PubMedCrossRefGoogle Scholar
  40. Vanderploeg HA, Liebig JR, Carmichael WW, Agy MA, Johengen TH, Fahnenstiel GL, Nalepa TF (2001) Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J Fish Aquat Sci 58:1208–1221CrossRefGoogle Scholar
  41. Ward CJ, Codd GA (1999). Comparative toxicity of four microcystins of different hydrophobicities to the protozoan, Tetrahymena pyriformis. J Appl Microbiol 86:874–882PubMedCrossRefGoogle Scholar
  42. Wiedner C, Visser PM, Fastner J, (2003). Effects of light on the microcystin content of Microcystis strain PCC 7806. Appl Environm Microbiol 69:1475–148CrossRefGoogle Scholar
  43. Williams DE, Craig M, Dawe SC, Kent ML, Holmes CFB, Andersen RJ (1997) Evidence for a covalently bound form of microcystin–LR in salmon liver and dungeness crab larvae. Chem Res Toxicol 10:463–469PubMedCrossRefGoogle Scholar
  44. Williams DE, Dawe SC, Kent ML, Andersen RJ, Craig M, Holmes CFB (1997) Bioaccumulation and clearance of microcystins from salt water, mussels, Mytilus edulis, and in vivo evidence for covalently bound microcystins in mussel tissues. Toxicon 35:1617–1625PubMedCrossRefGoogle Scholar
  45. Xie LQ, Xie P, Guo LG, Li L, Miyabara Y, Park HD (2005). Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environ Toxicol 20:293–300PubMedCrossRefGoogle Scholar
  46. Zurawell RW, Kotak BG, Prepas EE (1999). Influence of lake trophic status on the occurrence of microcystin–LR in the tissue of pulmonate snails. Freshw Biol 42:707–718CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bas W Ibelings
  • John W Fournie
  • Elizabeth D Hilborn
  • Geoffrey A Codd
  • Michael Coveney
  • Juli Dyble
  • Karl Havens
  • Bas W Ibelings
  • Jan Landsberg
  • Wayne Litaker
  • Bas W Ibelings
  • Karl Havens
  • Geoffrey A Codd
  • Juli Dyble
  • Jan Landsberg
  • Michael Coveney
  • John W Fournie
  • Elizabeth D Hilborn

There are no affiliations available

Personalised recommendations