Emerging high throughput analyses of cyanobacterial toxins and toxic cyanobacteria

  • Kaarina Sivonen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 619)


High Throughput Analysis Appl Environ Toxic Cyanobacterium Cyanobacterial Toxin Anabaena Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker JA, Entsch B, Neilan BA, McKay DB (2002) Monitoring changing toxigenicity of a cyanobacterial bloom by molecular methods. Appl Environ Microbiol 68:6070–6076PubMedCrossRefGoogle Scholar
  2. Castiglioni B, Rizzi E, Frosini A, Sivonen K, Rajaniemi P, Rantala A, Mugnai MA, Ventura S, Wilmotte A, Boutte C, Grubisic S, Balthasart P, Consolandi C, Bordoni R, Mezzelani A, Battaglia C, De Bellis G (2004) Development of a universal microarray based on the ligation detection reaction and 16S rRNA gene polymorphism to target diversity of cyanobacteria. Appl Environ Microbiol 70(12):7161–7172PubMedCrossRefGoogle Scholar
  3. Christiansen G, Fastner J, Erhard M, Börner T, Dittmann E (2003) Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185:564–572PubMedCrossRefGoogle Scholar
  4. Dittmann E, Neilan B, Erhard M, Von Döhren H, Börner T (1997) Insertional mutagenesis of peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26:779–787PubMedCrossRefGoogle Scholar
  5. Edwards C, Beattie KA, Scrimgeour CM, Codd GA (1992) Identification of anatoxin–a in benthic cyanobacteria (blue–green algae) and in associated dog poisonings at Loch Insh, Scotland Toxicon 30:1165–1175PubMedCrossRefGoogle Scholar
  6. Erhard M, von Döhren H, Jungblut P (1997) Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI–TOF mass spectrometry. Nature Biotechnol 15:906–909CrossRefGoogle Scholar
  7. Fastner J, Erhard M, von Döhren H (2001) Determination of oligopeptide diversity within a natural population of Microcystis spp. (cyanobacteria) by typing single colonies by matrix–assisted laser desorption ionization–time of flight mass spectrometry. Appl Environ Microbiol 67:5069–5076PubMedCrossRefGoogle Scholar
  8. Fergusson KM, Saint CP (2003) Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin–producing cyanobacteria. Environmental Toxicology 18:120–125PubMedCrossRefGoogle Scholar
  9. Foulds IV, Granacki A, Xiao C, Krull UJ, Castle A, Horgen PA (2002) Quantitation of microcystin–producing cyanobacteria and E. coli in water by 5’–nuclease PCR. J Appl Microbiol 93:825–834PubMedCrossRefGoogle Scholar
  10. Fujii K, Sivonen K, Adachi K, Noguchi K, Sano H, Hirayama K, Suzuki M, Harada KI (1997) Comparative study of toxic and non–toxic cyanobacterial products: novel peptides from toxic Nodularia spumigena AV1. Tetrahedron Letters 38:5525–5528CrossRefGoogle Scholar
  11. Gerry NP, Witowski NE, Day J, Hammer RP, Barany G, Barany F (1999) Universal DNA microarray method for multiplex detection of low abundance point mutations. J Mol Biol 292: 251–262PubMedCrossRefGoogle Scholar
  12. Goldberg J, Huang HB, Kwon YG, Greengard P, Nairn AC, Kuriyan J (1995) Three–dimensional structure of the catalytic subunit of protein serine/threonine phosphatase–1. Nature 376:745–753PubMedCrossRefGoogle Scholar
  13. Harada KI, Matsuura K, Suzuki M, Watanabe MF, Oishi S, Dahlem AM, Beasley VR, Carmichael WW (1990) Isolation and characterization of the minor components associated with microcystins–LR and –RR in the cyanobacterium (blue–green algae). Toxicon 28:55–64PubMedCrossRefGoogle Scholar
  14. Harada KI, Kondo F, Lawton F, Lawton LA (1999) Laboratory analysis of cyanotoxins. In: Toxic Cyanobacteria in Water: a Guide to Public Health Significance, Monitoring and Management. I. Chorus and J. Bertram (Edn). The World Health Organization. ISBN 0–419–23930–8. E and FN Spon, London, UK, pp 369–405Google Scholar
  15. Heresztyn T, Nicholson BC (1997) Nodularin concentrations in Lakes Alexandrina and Albert, South Australia, during bloom of the cyanobacterium (blue–green alga) Nodularia spumigena and degradation of the toxin. Environ Toxicol Water Qual 12:273–281CrossRefGoogle Scholar
  16. Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchiv M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. The Plant Cell 13:793–806PubMedCrossRefGoogle Scholar
  17. Hilborn DE, Carmichael WW, Yuan M, Azevedo SMFO (2005) A simple colorimertic method to detect biological evidence of human exposure to microcystins. Toxicon 46:218–221PubMedCrossRefGoogle Scholar
  18. Hisbergues M, Christiansen G, Rouhiainen L, Sivonen K, Börner T (2003) PCR–based identification of microcystin–producing genotypes of different cyanobacterial genera. Arch Microbiol 180:402–410PubMedCrossRefGoogle Scholar
  19. Hotto A, Satchwell M, Boyer G (2005) Seasonal production and molecular characterization of microcystins in Oneida Lake, New York, USA. Environ Toxicol 20:243–248PubMedCrossRefGoogle Scholar
  20. Izaguirre G, Neilan BA (2004) Benthic Phormidium species that produces microcystin–LR, isolated from three reservoirs in Southern California. Sixth International Conference on Toxic Cyanobacteria, Abstract book pp 50Google Scholar
  21. Kaebernick M, Rohrlack T, Christofferssen K, Neilan BA (2001) A spontaneous mutant of microcystin biosynthesis: genetic characterization and effect on Daphnia. Environ Microbiol 3:669–679PubMedCrossRefGoogle Scholar
  22. Kaneko T, Tabata S (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp PCC6803. Plant and Cell Physiology 38:1171–1176PubMedGoogle Scholar
  23. Katoh H, Asthana RK, Ohmori M (2004) Gene expression in the cyanobacterium Anabaena sp PCC7120 under desiccation. Microbial Ecol 47:164–174CrossRefGoogle Scholar
  24. Kuiper–Goodman T, Falconer I, Fitzgerald J (1999) Human health aspects. In: Toxic cyanobacteria in water. A guide to their Public Health Consequences, Monitoring and Management. I. Chorus and J. Bartram (edn) The World Health Organization. ISBN 0–419–23930–8 E and FN Spoon, London, pp 113–153Google Scholar
  25. Kurmayer R, Kutzenberger T (2003) Application of real–time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp Appl Environ Microbiol 69:6723–6730Google Scholar
  26. Kurmayer R, Dittmann E, Fastner J, Chorus I (2002) Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp In Lake Wannsee (Berlin, Germany). Microb Ecol 43:107–118PubMedCrossRefGoogle Scholar
  27. Kurmayer R, Christiansen G, Chorus I (2003) The abundance of microcystin–producing genotypes correlates positively with colony size in Microcystis sp and determines its microcystin net production in Lake Wannsee. Appl Environ Microbiol 69:787–795PubMedCrossRefGoogle Scholar
  28. Kurmayer R, Christiansen G, Fastner J, Börner T (2004) Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp Environ Microbiol 6:831–841PubMedCrossRefGoogle Scholar
  29. Kurmayer R, Christiansen G, Gumpenberger M, Fastner J (2005) Genetic identification of microcystin ecotypes in toxic cyanobacteria of the genus Planktothrix. Microbiology 151:1525–1533PubMedCrossRefGoogle Scholar
  30. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  31. Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp PCC 6803. Academy of Sciences of the United States of America 100:9061–9066Google Scholar
  32. Mbedi S, Welker M, Fastner J, Wiedner C (2005) Variability of the microcystin synthetase gene cluster in the genus Planktothrix (Oscillatoriales, Cyanobacteria). FEMS Microbiol Lett 245:299–306PubMedCrossRefGoogle Scholar
  33. Meriluoto J, Codd GA (edn) (2005) TOXIC: Cyanobacterial Monitoring and Cyanotoxin Analysis. Åbo Akademi University Press (Turku), ISBN 951–765–259–3, pp 149Google Scholar
  34. Meriluoto J, Karlsson K, Spoof L (2004) High–throughput screening of ten microcystins and nodularins, cyanobacterial peptide hepatotoxins, by reversed–phase liquid chromatography–electrospray ionisation mass spectrometry. Chromatographia 59:291–298Google Scholar
  35. Mez K, Beattie KA, Codd GA, Hanselmann K, Hauser B, Naegeli H, Preisig HR (1997) Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. Eur J Phycol 32:111–117CrossRefGoogle Scholar
  36. Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS (2003) Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bact 185:2774–2785PubMedCrossRefGoogle Scholar
  37. Moffitt MC, Neilan BA (2004) Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70:6353–6362PubMedCrossRefGoogle Scholar
  38. Neilan BA, Dittmann E, Rouhiainen L, Bass RA, Schaub V, Sivonen K, Börner T (1999) Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J Bact 181:4089–4097PubMedGoogle Scholar
  39. Nishizawa T, Asayama M, Fujii K, Harada KI, Shirai M (1999) Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp J Biochem 126:520–529PubMedGoogle Scholar
  40. Nishizawa T, Ueda A, Asayama M, Fujii K, Harada KI, Ochi K, Shirai M(2000) Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. J Biochem 127:779–789Google Scholar
  41. Nonneman D, Zimba PV (2002) A PCR–based test to assess the potential for microcystin occurrence in channel catfish production ponds. J Phycol 38:230–233CrossRefGoogle Scholar
  42. Ohtake A, Shirai M, Aida T, Mori N, Harada KI, Matsuura K, Suzuki M, Nakano M (1989) Toxicity of Microcystis species isolated from natural blooms and purification of the toxin. Appl Environ Microbiol 55:3202–3207PubMedGoogle Scholar
  43. Oksanen I, Jokela J, Fewer D, Wahlsten M, Rikkinen J, Sivonen K (2004) Discovery of rare and highly toxic microcystins from lichen associated cyanobacterium Nostoc sp strain IO–102–I. Appl Environ Microbiol 70:5756–5763PubMedCrossRefGoogle Scholar
  44. Ouahid Y, Pérez–Silva G, del Campo FF (2005) Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplifications of specific microcystin synthetase gene regions. Environ Toxicol 20:235–242PubMedCrossRefGoogle Scholar
  45. Pan H, Song L, Liu Y, Börner T (2002) Detection of hepatotoxic Microcystis strain by PCR with intact cells from both culture and environmental samples. Arch Microbiol 178:421–427PubMedCrossRefGoogle Scholar
  46. Prinsep MR, Caplan FR, Moore RE, Patterson GML, Honkanen RE, Boynton AL (1992) Microcystin–LA from a blue–green alga belonging to the Stignonematales. Phytochemistry 31:1247–1248CrossRefGoogle Scholar
  47. Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K (2004) Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences of the United States of America 101(2):568–573Google Scholar
  48. Rapala J, Erkomaa K, Kukkonen J, Sivonen K, Lahti K (2002) Detection of microcystins with protein phosphatase inhibition assay, high–performance liquid chromatography–UV detection and enzyme–linked immunosorbent assay. Comparison of methods. Analytica Chimica Acta 466:213–231CrossRefGoogle Scholar
  49. Ressom R, Soong FS, Fitzgerald J, Turczynowicz L, El Saadi O, Roder D, Maynard T, Falconer I (1994) Health effects of toxic cyanobacteria (blue–green algae). National Health and Medical Research Council, Australian Government Publishing Service, Canberra, Australia, pp 108Google Scholar
  50. Rinehart KL, Harada KI, Namikoshi M, Chen C, Harvis CA, Munro MHG, Blunt JW, Mulligan PE, Beasley VR, Dahlem AM, Carmichael WW (1988) Nodularin, microcystin, and the configuration of Adda. J Am Chem Soc 110:8557–8558Google Scholar
  51. Rinehart KL, Namikoshi M, Choi BW (1994) Structure and biosynthesis of toxins from blue–green alga (cyanobacteria). J Appl Phycol 6:159–176CrossRefGoogle Scholar
  52. Rinta–Kanto JM, Ouellette AJA, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW (2005) Quantification of toxic Microcystis spp during the 2003 and 2004 blooms in Western Lake Erie using quantitative real–time PCR. Environ Sci Technol 39:4198–4205PubMedCrossRefGoogle Scholar
  53. Rouhiainen L, Paulin L, Suomalainen S, Hyytiöinen H, Buikema W, Haselkorn R, Sivonen K (2000) Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Molecular Microbiol 37(1):156–167CrossRefGoogle Scholar
  54. Rouhiainen L, Vakkilainen T, Lumbye B, Siemer, Buikema W, Haselkorn R, Sivonen K (2004) Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 70(2):686–692PubMedCrossRefGoogle Scholar
  55. Rudi K, Skulberg OM, Kulberg R, Jakobsen KS (2000) Application of sequence–specific labelled 16S rRNA gene oligonucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridisation. Appl Environ Microbiol 66:4004–4011PubMedCrossRefGoogle Scholar
  56. Schembri MA, Neilan BA, Saint CP (2001) Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environ Toxicol 16:413–421PubMedCrossRefGoogle Scholar
  57. Simon WJ, Hall JJ, Suzuki I, Murata N, Slabas AR (2002) Proteomic study of the soluble proteins from the unicellular cyanobacterium Synechocystis sp. PCC6803. using automated matrix–assisted laser desorption/ionisation–time of flight peptide mass fingerprinting. Proteomics 2:1735–1742PubMedCrossRefGoogle Scholar
  58. Sivonen K (2000) Chapter 26, Freshwater cyanobacterial neurotoxins: ecobiology, chemistry and detection. In: Seafood and Freshwater Toxins. L. M. Botana (Edn) Marcel Dekker, Inc, New York, USA, pp 567–582Google Scholar
  59. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Toxic Cyanobacteria in Water: a Guide to Public Health Significance, Monitoring and Management. I Chorus and J Bertram (Edn) The World Health Organization. ISBN 0–419–23930–8. E and FN Spon, London, UK, pp 41–111Google Scholar
  60. Sivonen K, Kononen K, Carmichael WW, Dahlem AM, Rinehart K, Kiviranta J, Niemelö SI (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and the structure of the toxin. Appl Environ Microbiol 55(8):1990–1995PubMedGoogle Scholar
  61. Sivonen K, Namikoshi M, Evans WR, Fördig M, Carmichael WW, Rinehart KL (1992) Three new microcystins, cyclic heptapeptide hepatotoxins, from Nostoc sp strain 152. Chem Res Toxicol 5(4):464–469PubMedCrossRefGoogle Scholar
  62. Surakka A, Sihvonen LM, Lehtimöki JM, Wahlsten M, Vuorela P, Sivonen K (2005) Benthic cyanobacteria from the Baltic Sea contain cytotoxic Anabaena, Nodularia and Nostoc strains and an apoptosis inducing Phormidium strain. Environ Toxicol 20:285–292PubMedCrossRefGoogle Scholar
  63. Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC 7806: an integrated peptide–polyketide synthase system. Chem Biol 7:753–764PubMedCrossRefGoogle Scholar
  64. Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 67:2810–2818Google Scholar
  65. Vaitomaa J, Rantala A, Halinen K, Rouhiainen L, Tallberg P, Mokelke L, Sivonen K (2003) Quantitative real–time–PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl Environ Microbiol 69(12):7289–7297PubMedCrossRefGoogle Scholar
  66. Vezie C, Brient L, Sivonen K, Betru G, Lefeuvre GC, Salkinoja–Salonen M (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand–Lieu (France). Microbial Ecology 35:126–135PubMedCrossRefGoogle Scholar
  67. Via–Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard M, Chorus I (2004) Distribution of microcystin–producing and non–microcystin–producing Microcystis sp in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. System Appl Microbiol 27:592–602CrossRefGoogle Scholar
  68. Welker M, Christiansen G, von Döhren H (2004) Diversity of coexisting Planktothrix (cyanobacteria) chemotypes deduced by mass spectral analysis of microystins and other oligopeptides. Arch Microbiol 182(4):288–98PubMedCrossRefGoogle Scholar
  69. Wintzingerode VF, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR–based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kaarina Sivonen
    • 1
  1. 1.Department of Applied Chemistry and MicrobiologyViikkiBiocenterFinland

Personalised recommendations