Case Study: Immunogenicity of Anti-TNF Antibodies

  • Klaus Bendtzen
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume VIII)


Anti-tumor necrosis factor (TNF) therapy has become an important alternative in the management of several chronic immunoinflammatory diseases. Three recombinant anti-TNF drugs are currently approved for clinical use in patients with various chronic inflammatory diseases such as rheumatoid arthritis, Crohn’s diseases, and severe psoriasis: (1) Remicade™ (infliximab), a mouse-human IgG1-kappa anti-TNF-alpha monoclonal antibody, (2) Enbrel™ (etanercept), a fusion protein of human TNF receptor 2 and human IgG1, and (3) Humira™ (adalimumab), a fully human IgG1-kappa anti-TNF-alpha monoclonal antibody. Two other anti-TNF-alpha antibody constructs have shown promise in pivotal phase III trials in patients with some of the same diseases: (4) Cimzia™ CDP870 (certolizumab pegol), a PEGylated Fab fragment of a humanized anti-TNF-alpha monoclonal antibody, and (5) CNTO 148 (golimumab), a fully human IgG1-kappa anti-TNF-alpha monoclonal antibody. All these proteins dramatically lower disease activity and, in some patients, may induce remission. Unfortunately, however, not all patients respond favorably to anti-TNF antibodies. Some patients either do not respond at all (primary response failure) or they respond initially but have later relapses (secondary response failure) despite increased dosage and/or more frequent administration of the drugs. The reason(s) for these response failures is(are) not entirely clear, but interindividual and even intraindividual differences in bioavailability and pharmacokinetics may contribute to the problem. Furthermore, immunogenicity of the drugs causing patients to develop anti-antibodies is a problem now recognized by many investigators, drug-controlling agencies, health insurance companies, and drug manufacturers. Monitoring of patients for circulating levels of functional anti-TNF drugs and anti-antibody development is therefore warranted so that administration can be tailored to the individual patient and so that prolonged therapies can be provided effectively and economically with little or no risk to the patients.


Tumor Necrosis Factor Inhibitor Certolizumab Pegol Infliximab Therapy Response Failure Tumor Necrosis Factor Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ang, H. T., and Helfgott, S. 2003. Do the clinical responses and complications following etanercept or infliximab therapy predict similar outcomes with the other tumor necrosis factor-alpha antagonists in patients with rheumatoid arthritis? J. Rheumatol. 30:2315–2318.PubMedGoogle Scholar
  2. Baert, F., Noman, M., Vermeire, S., Van Assche, G., D’ Haens, G., Carbonez, A., and Rutgeerts, P. 2003. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N. Engl. J. Med. 348:601–608.PubMedCrossRefGoogle Scholar
  3. Bendtzen, K. 2003. Anti-IFN BAb and NAb antibodies: A minireview. Neurology 61 (Suppl. 5):S6–S10.PubMedGoogle Scholar
  4. Bendtzen, K., Geborek, P., Svenson, M., Larsson, L., Kapetanovic, M. C., and Saxne, T. 2006. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor Infliximab. Arthrit. Rheum. 54:3782–3789.CrossRefGoogle Scholar
  5. Bongartz, T., Sutton, A. J., Sweeting, M. J., Buchan, I., Matteson, E. L., and Montori, V. 2006. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295:2275–2285.PubMedCrossRefGoogle Scholar
  6. Cheifetz, A., and Mayer, L. 2005. Monoclonal antibodies, immunogenicity, and associated infusion reactions. Mt. Sinai J. Med. 72:250–256.PubMedGoogle Scholar
  7. Clair, E. W., St., Wagner, C. L., Fasanmade, A. A., Wang, B., Schaible, T., Kavanaugh, A., and Keystone, E. C. 2002. The relationship of serum infliximab concentrations to clinical improvement in rheumatoid arthritis. Results from ATTRACT, a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46:1451–1459.Google Scholar
  8. Flendrie, M., Creemers, M. C., Welsing, P. M., den Broeder, A. A., and van Riel, P. L. 2003. Survival during treatment with tumour necrosis factor blocking agents in rheumatoid arthritis. Ann. Rheum. Dis. 62 (Suppl. 2):ii30–ii33.PubMedGoogle Scholar
  9. Grubb, R., Grubb, A., Kjellen, L., Lycke, E., and Åman, P. 1999. Rheumatoid arthritis–a gene transfer disease. Exp. Clin. Immunogenet. 16:1–7.PubMedCrossRefGoogle Scholar
  10. Gudbrandsdottir, S., Larsen, R., Sorensen, L. K., Nielsen, S., Hansen, M. B., Svenson, M., Bendtzen, K., and Müller, K. 2004. TNF and LT binding capacities in the plasma of arthritis patients: effect of etanercept treatment in juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 22:118–124.PubMedGoogle Scholar
  11. Han, P. D., and Cohen, R. D. 2004. Managing immunogenic responses to infliximab: treatment implications for patients with Crohn’s disease. Drugs 64:1767–1777.PubMedCrossRefGoogle Scholar
  12. Hansen, K. E., Hildebrand, J. P., Genovese, M. C., Cush, J. J., Patel, S., Cooley, D. A., Cohen, S. B., Gangnon, R. E., and Schiff, M. H. 2004. The efficacy of switching from etanercept to infliximab in patients with rheumatoid arthritis. J. Rheumatol. 31:1098–1102.PubMedGoogle Scholar
  13. Haraoui, B. 2005. Differentiating the efficacy of tumor necrosis factor inhibitors. J. Rheumatol. Suppl. 74:3–7.PubMedGoogle Scholar
  14. Haraoui, B., Keystone, E. C., Thorne, J. C., Pope, J. E., Chen, I., Asare, C. G., and Leff, J. A. 2004. Clinical outcomes of patients with rheumatoid arthritis after switching from infliximab to etanercept. J. Rheumatol. 31:2356–2359.PubMedGoogle Scholar
  15. Hennig, C., Rink, L., Fagin, U., Jabs, W. J., and Kirchner, H. 2000. The influence of naturally occurring heterophilic anti-immunoglobulin antibodies on direct measurement of serum proteins using sandwich ELISAs. J. Immunol. Methods 235:71–80.PubMedCrossRefGoogle Scholar
  16. Lobo, E. D., Hansen, R. J., and Balthasar, J. P. 2004. Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 93:2645–2668.PubMedCrossRefGoogle Scholar
  17. Maini, R. N., Breedveld, F. C., Kalden, J. R., Smolen, J. S., Davis, D., Macfarlane, J. D., Antoni, C., Leeb, B., Elliott, M. J., Woody, J. N., Schaible, T. F., and Feldmann, M. 1998. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor a monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthrit. Rheum. 41:1552–1563.CrossRefGoogle Scholar
  18. Maini, S. R. 2004. Infliximab treatment of rheumatoid arthritis. Rheum. Dis. Clin. North Am. 30:329–347, vii.PubMedCrossRefGoogle Scholar
  19. Moreland, L. W. 2004. Drugs that block tumour necrosis factor: experience in patients with rheumatoid arthritis. Pharmacoeconomics 22:39–53.PubMedCrossRefGoogle Scholar
  20. Sandborn, W. J. 2006. What’s new: innovative concepts in inflammatory bowel disease. Colorectal Dis. 8 (Suppl. 1):3–9.PubMedCrossRefGoogle Scholar
  21. Schellekens, H., and Casadevall, N. 2004. Immunogenicity of recombinant human proteins: causes and consequences. J. Neurol. 251 (Suppl. 2):II4–II9.PubMedGoogle Scholar
  22. Scott, D. L., and Kingsley, G. H. 2006. Tumor necrosis factor inhibitors for rheumatoid arthritis. N. Engl. J. Med. 355:704–712.PubMedCrossRefGoogle Scholar
  23. Smolen, J. S., Redlich, K., Zwerina, J., Aletaha, D., Steiner, G., and Schett, G. 2005. Pro-inflammatory cytokines in rheumatoid arthritis: pathogenetic and therapeutic aspects. Clin. Rev. Allergy Immunol. 28:239–248.PubMedCrossRefGoogle Scholar
  24. Solau-Gervais, E., Laxenaire, N., Cortet, B., Dubucquoi, S., Duquesnoy, B., and Flipo, R. M. 2006. Lack of efficacy of a third tumour necrosis factor alpha antagonist after failure of a soluble receptor and a monoclonal antibody. Rheumatology (Oxford) 45:1121–1124.CrossRefGoogle Scholar
  25. Svenson, M., Geborek, P., Saxne, T., and Bendtzen, K. 2007. Monitoring patients treated with anti-TNF-alpha biopharmaceuticals – assessing serum infliximab and anti-infliximab antibodies. Rheumatology 46:1828–1834.PubMedCrossRefGoogle Scholar
  26. Svenson, M., Nedergaard, S., Heegaard, P. M. H., Whisenand, T. D., Arend, W. P., and Bendtzen, K. 1995. Differential binding of human interleukin-1 (IL-1) receptor antagonist to natural and recombinant soluble and cellular IL-1 type I receptors. Eur. J. Immunol. 25:2842–2850.PubMedCrossRefGoogle Scholar
  27. Tangri, S., Mothe, B. R., Eisenbraun, J., Sidney, J., Southwood, S., Briggs, K., Zinckgraf, J., Bilsel, P., Newman, M., Chesnut, R., Licalsi, C., and Sette, A. 2005. Rationally engineered therapeutic proteins with reduced immunogenicity. J. Immunol. 174:3187–3196.PubMedGoogle Scholar
  28. Teillaud, J. L. 2005. Engineering of monoclonal antibodies and antibody-based fusion proteins: successes and challenges. Expert Opin. Biol. Ther. 5 (Suppl. 1):S15–27.PubMedCrossRefGoogle Scholar
  29. van Vollenhoven, R., Harju, A., Brannemark, S., and Klareskog, L. 2003. Treatment with infliximab (Remicade) when etanercept (Enbrel) has failed or vice versa: data from the STURE registry showing that switching tumour necrosis factor alpha blockers can make sense. Ann. Rheum. Dis. 62:1195–1198.PubMedCrossRefGoogle Scholar
  30. Vilcek, J., and Feldmann, M. 2004. Historical review: Cytokines as therapeutics and targets of therapeutics. Trends Pharmacol. Sci. 25:201–209.PubMedCrossRefGoogle Scholar
  31. Watier, H. 2005. Variability factors in the clinical response to recombinant antibodies and IgG Fc-containing fusion proteins. Expert Opin. Biol. Ther. 5 (Suppl. 1):S29–36.PubMedCrossRefGoogle Scholar
  32. Wolbink, G. J., Voskuyl, A. E., Lems, W. F., de Groot, E., Nurmohamed, M. T., Tak, P. P., Dijkmans, B. A., and Aarden, L. 2005. Relationship between serum trough infliximab levels, pretreatment C reactive protein levels, and clinical response to infliximab treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 64:704–707.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2008

Authors and Affiliations

  • Klaus Bendtzen

There are no affiliations available

Personalised recommendations