Skip to main content

Separating Reflection Components of Textured Surfaces using a Single Image

  • Chapter
Digitally Archiving Cultural Objects

In inhomogeneous objects, highlights are linear combinations of diffuse and specular reflection components. A number of methods have been proposed to separate or decompose these two components. To our knowledge, all methods that use a single input image require explicit color segmentation to deal with multicolored surfaces. Unfortunately, for complex textured images, current color segmentation algorithms are still problematic to segment correctly. Consequently, a method without explicit color segmentation becomes indispensable, and this chapter presents such a method. The method is based solely on colors, particularly chromaticity, without requiring any geometrical information. One of the basic ideas is to iteratively compare the intensity logarithmic differentiation of an input image and its specular-free image. A specular-free image is an image that has exactly the same geometrical profile as the diffuse component of the input image, and that can be generated by shifting each pixel’s intensity and maximum chromaticity non-linearly. Unlike existing methods using a single image, all processes in the proposed method are done locally, involving a maximum of only two neighboring pixels. This local operation is useful for handling textured objects with complex multicolored scenes. Evaluations by comparison with the results of polarizing filters demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bajscy, S.W. Lee, and A. Leonardis. Detection of diffuse and specular interface reflections by color image segmentation. International Journal of Computer Vision, 17(3):249-272, 1996.

    Google Scholar 

  2. P. Beckmann and A. Spizzochino. The scattering of electromagnetic waves from rough surfaces. Pergamon, New York, 1963.

    MATH  Google Scholar 

  3. M. Born and E. Wolf. Principles of Optics. Cambridge, seventh edition, 1999.

    Google Scholar 

  4. A. Criminisi, S.B. Kang, R. Swaminathan, S. Szeliski, and P. Anandan. Extracting layers and analysis their specular properties using epipolar plane image analysis. Microsoft Research Technical Report MSR-TR-2002-19, 2002.

    Google Scholar 

  5. M. D’Zmura and P. Lennie. Mechanism of color constancy. Journal of Optics Society of America A., 3(10):1162-1672, 1986.

    Google Scholar 

  6. B.V. Funt, M. Drew, and M. Brockington. Recovering shading from color images. in proceeding of European Conference on Computer Vision (ECCV), pages 124-132, 1992.

    Google Scholar 

  7. R. Gershon, A.D. Jepson, and J.K. Tsotsos. Ambient illumination and the determination of material changes. Journal of Optics Society of America A., 3(10):1700-1707, 1986.

    Article  Google Scholar 

  8. R.C. Gonzales and R.E. Woods. Digital Image Processing. Addison-Wesley, 1993.

    Google Scholar 

  9. G. Healey and R. Kondepudy. Radiometric ccd camera calibration and noise estimation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 16(3):267-276, 1994.

    Article  Google Scholar 

  10. J.M. Rubin and W.A. Richard. Color vision: representing material changes. AI Memo 764, MIT Artificial Intelligence Lab. Cambridge, Mass., 1984.

    Google Scholar 

  11. G.J. Klinker, S.A. Shafer, and T. Kanade. The measurement of highlights in color images. International Journal of Computer Vision, 2:7-32, 1990.

    Article  Google Scholar 

  12. J.H. Lambert. Photometria sive de mensura de gratibus luminis, colorum et umbrae. Eberhard Klett: Augsberg, Germany, 1760.

    Google Scholar 

  13. H.C. Lee, E.J. Breneman, and C.P. Schulte. Modeling light reflection for computer color vision. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12:402-409, 1990.

    Article  Google Scholar 

  14. S.W. Lee. Understanding of surface reflections in Computer vision by color and multiple views. PhD thesis, University of Pennsylvania, 1991.

    Google Scholar 

  15. S.W. Lee and R. Bajcsy. Detection of specularity using color and multiple views. Image and Vision Computing, 10:643-653, 1992.

    Article  Google Scholar 

  16. T.M. Lehmann and C. Palm. Color line search for illuminant estimation in real-world scene. Journal of Optics Society of America A., 18(11):2679-2691,2001.

    Article  Google Scholar 

  17. S. Lin, Y. Li, S.B. Kang, X. Tong, and H.Y. Shum. Diffuse-specular separation and depth recovery from image sequences. In in proceeding of European Conference on Computer Vision (ECCV), pages 210-224, 2002.

    Google Scholar 

  18. S. Lin and H.Y. Shum. Separation of diffuse and specular reflection in color images. In in proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2001.

    Google Scholar 

  19. D. Miyazaki, R.T. Tan, K. Hara, and K. Ikeuchi. Polarization-based inverse rendering from a single view. in proceeding of IEEE International Conference on Computer Vision (ICCV), 2003.

    Google Scholar 

  20. S.K. Nayar, X.S. Fang, and T. Boult. Separation of reflection components using color and polarization. International Journal of Computer Vision, 21 (3),1996.

    Google Scholar 

  21. S.K. Nayar, K. Ikeuchi, and T. Kanade. Surface reflection: Physical and geometrical perspectives. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(7):611-634, 1991.

    Article  Google Scholar 

  22. M. Oren and S.K. Nayar. Generalization of the lambertian model and implications for machine vision. International Journal of Computer Vision, 14 (3):227-251, 1995.

    Article  Google Scholar 

  23. J.P.S. Parkkinen, J. Hallikainen, and T. Jasskelainen. Characteristic spectra of munsell colors. Journal of Optics Society of America A., 6, 1989.

    Google Scholar 

  24. Y. Sato and K. Ikeuchi. Temporal-color space analysis of reflection. Journal of Optics Society of America A., 11, 1994.

    Google Scholar 

  25. S. Shafer. Using color to separate reflection components. Color Research and Applications, 10:210-218, 1985.

    Article  Google Scholar 

  26. R.T. Tan, K. Nishino, and K. Ikeuchi. Color constancy through inverse intensity chromaticity space. Journal of Optics Society of America A., 21 (3):321-334, 2004.

    Article  Google Scholar 

  27. R. T. Tan, K. Nishino, and K. Ikeuchi. Separating reflection components based on chromaticity and noise analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, to appear, October 2004.

    Google Scholar 

  28. K.E. Torrance and E.M. Sparrow. Theory for off-specular reflection from roughened surfaces. Journal of Optics Society of America, 57:1105-1114, 1966.

    Article  Google Scholar 

  29. L. Wolff, S.K. Nayar, and M. Oren. Improved diffuse reflection models for computer vision. International Journal of Computer Vision, 30(1):55-71,1998.

    Article  Google Scholar 

  30. L.B. Wolff. Polarization-based material classification from specular reflection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12 (11):1059-1071, 1990.

    Article  Google Scholar 

  31. L.B. Wolff. A diffuse reflectance model for smooth dielectrics. Journal of Optics Society of America A., 11(11):2956-2968, 1994.

    Article  MathSciNet  Google Scholar 

  32. L.B. Wolff and T. Boult. Constraining object features using polarization reflectance model. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(7):635-657, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tan, R.T., Ikeuchi, K. (2008). Separating Reflection Components of Textured Surfaces using a Single Image. In: Digitally Archiving Cultural Objects. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75807_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75807_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-75806-0

  • Online ISBN: 978-0-387-75807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics