Skip to main content

Time—Frequency Analysis of Brain Neurodynamics

  • Chapter
  • First Online:
Advances in Applied Mathematics and Global Optimization

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 17))

  • 2354 Accesses

Summary

The characteristics of neurodynamics of intracranial electroencephalogram (EEG) at different frequency bands were investigated in a sample of two patients with epilepsy. The results indicate a tendency for the gamma, theta, and alpha frequency bands in EEG signals to have a higher dimensional complexity than the beta and gamma frequency bands. We also investigate the time–frequency component decomposition of EEG signals and observe very different perceptual complexity and a difference in evoked spectral responses, which could be a reflection of neuronal recruitment that triggers the epileptogenic process. The results of this study may provide insights to the brain network’s mechanism by which local and regional circuits can continuously form and reform with different regions functionally disconnected from other brain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.G. Athanasiou, C.P. Bachas, and W.F.Wolf. Invariant geometry of spin-glass states. Phys. Rev. B, 35:1965–1968, 1987.

    Article  Google Scholar 

  2. F. Barahona. On the computational complexity of spin glass models. J. Phys. A: Math. Gen., 15:3241–3253, 1982.

    Article  MathSciNet  Google Scholar 

  3. F. Barahona. On the exact ground states of three-dimensional Ising spin glasses. J. Phys. A: Math. Gen., 15:L611–L615, 1982.

    Article  MathSciNet  Google Scholar 

  4. W. Chaovalitwongse, P.M. Pardalos, L.D. Iasemidis, D.-S. Shiau, and J.C. Sackellares. Applications of global optimization and dynamical systems to prediction of epileptic seizures. In P.M. Pardalos, J.C. Sackellares, L.D. Iasemidis, and P.R. Carney, editors, Quantitative Neurosciences, pages 1–36. Kluwer Academic, 2004.

    Google Scholar 

  5. W.A. Chaovalitwongse, P.M. Pardalos, and O.A. Prokoyev. A new linearization technique for multi-quadratic 0–1 programming problems. Oper. Res. Lett., 32(6):517–522, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  6. H.I. Choi and W.J. Williams. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans. Acoustics, Speech Signal, 37:862– 871, 1989.

    Article  Google Scholar 

  7. L. Cohen. Time-frequency distribution–a review. Proc. IEEE, 77:941–981, 1989.

    Article  Google Scholar 

  8. C.T. Cripe. Brainwave and EEG: The language of the brain. http://www.crossroads institute.org/eeg.html, 2004.

  9. L. Diambra, J.C. Bastos de Figueiredo, and C.P. Malta. Epileptic activity recognition in EEG recording. Physica A, 273:495–505, 1999.

    Google Scholar 

  10. C.E. Elger and K. Lehnertz. Seizure prediction by non-linear time series analysis of brain electrical activity. Europ. J. Neurosci., 10:786–789, 1998.

    Article  Google Scholar 

  11. W.G. Frank, T. Lookman, M.A. Nerenberg, C. Essex, J. Lemieux, and W. Blume. Chaotic time series analyses of epileptic seizures. Physica D, 46:427–438, 1990.

    Article  MATH  Google Scholar 

  12. R. Horst, P.M. Pardalos, and N.V. Thoai. Introduction to Global Optimization. Kluwer Academic, 1995.

    Google Scholar 

  13. L.D. Iasemidis. On the dynamics of the human brain in temporal lobe epilepsy. PhD thesis, University of Michigan, Ann Arbor, 1991.

    Google Scholar 

  14. L.D. Iasemidis, P.M. Pardalos, J.C. Sackellares, and D.-S. Shiau. Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J. Combin. Optim., 5:9–26, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  15. L.D. Iasemidis, P.M. Pardalos, D.-S. Shiau, W. Chaovalitwongse, K. Narayanan, A. Prasad, K. Tsakalis, P.R. Carney, and J.C. Sackellares. Long term prospective on-line real-time seizure prediction. Journal of Clinical Neurophysiology, 116(3):532– 544, 2005.

    Article  Google Scholar 

  16. L.D. Iasemidis, J.C. Principe, and J.C. Sackellares. Measurement and quantification of spatiotemporal dynamics of human epileptic seizures. In M. Akay, editor, Nonlinear Biomedical Signal Processing, pages 294–318. Wiley–IEEE Press, vol. II, 2000.

    Google Scholar 

  17. L.D. Iasemidis and J.C. Sackellares. The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex. In D.W. Duke and W.S. Pritchard, editors, Measuring Chaos in the Human Brain, pages 49–82. World Scientific, 1991.

    Google Scholar 

  18. L.D. Iasemidis, D.-S. Shiau, W. Chaovalitwongse, J.C. Sackellares, P.M. Pardalos, P.R. Carney, J.C. Principe, A. Prasad, B. Veeramani, and K. Tsakalis. Adaptive epileptic seizure prediction system. IEEE Trans. Biomed. Eng., 50(5):616–627, 2003.

    Article  Google Scholar 

  19. L.D. Iasemidis, D.-S. Shiau, P.M. Pardalos, and J.C. Sackellares. Phase entrainment and predictability of epileptic seizures. In P.M. Pardalos and J.C. Principe, editors, Biocomputing, pages 59–84. Kluwer Academic, 2001.

    Google Scholar 

  20. L.D. Iasemidis, D.-S. Shiau, J.C. Sackellares, and P.M. Pardalos. Transition to epileptic seizures: Optimization. In D.Z. Du, P.M. Pardalos, and J. Wang, editors, DIMACS series in Discrete Mathematics and Theoretical Computer Science, pages 55–74. American Mathematical Society, 1999.

    Google Scholar 

  21. L.D. Iasemidis, D.-S. Shiau, J.C. Sackellares, P.M. Pardalos, and A. Prasad. Dynamical resetting of the human brain at epileptic seizures: Application of nonlinear dynamics and global optimization tecniques. IEEE Trans. Biomed. Eng., 51(3):493–506, 2004.

    Article  Google Scholar 

  22. L.D. Iasemidis, H.P. Zaveri, J.C. Sackellares, and W.J. Williams. Phase space topography of the electrocorticogram and the Lyapunov exponent in partial seizures. Brain Topog., 2:187–201, 1990.

    Article  Google Scholar 

  23. K. Lehnertz and C.E. Elger. Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys. Rev. Lett., 80:5019–5022, 1998.

    Article  Google Scholar 

  24. B. Litt, R. Esteller, J. Echauz, D.A. Maryann, R. Shor, T. Henry, P. Pennell, C. Epstein, R. Bakay, M. Dichter, and G. Vachtservanos. Epileptic seizures may begin hours in advance of clinical onset: A report of five patients. Neuron, 30:51–64, 2001.

    Article  Google Scholar 

  25. M. Mezard, G. Parisi, and M.A. Virasoro. Spin Glass Theory and Beyond. World Scientific, 1987.

    Google Scholar 

  26. P.M. Pardalos, W. Chaovalitwongse, L.D. Iasemidis, J.C. Sackellares, D.-S. Shiau, P.R. Carney, O.A. Prokopyev, and V.A. Yatsenko. Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program., 101(2):365–355, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  27. P.M. Pardalos and G. Rodgers. Parallel branch and bound algorithms for unconstrained quadratic zero-one programming. In R. Sharda et al., editor, Impact of Recent Computer Advances on Operations Research. North-Holland, 1989.

    Google Scholar 

  28. P.M. Pardalos and G. Rodgers. Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing, 45:131–144, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  29. P.M. Pardalos, J.C. Sackellares, L.D. Iasemidis, and P.R. Carney. Quantitative Neurosciences. Kluwer Academic, 2004.

    Google Scholar 

  30. O.A. Prokopyev, V. Boginski, W. Chaovalitwongse, P.M. Pardalos, J.C. Sackellares, and P.R. Carney. Network-based techniques in EEG data analysis and epileptic brain modeling. In P.M. Pardalos and A. Vazacopoulos, editors, Data Mining in Biomedicine. Kluwer Academic, 2005.

    Google Scholar 

  31. M. Le Van Quyen, J. Martinerie, M. Baulac, and F. Varela. Anticipating epileptic seizures in real time by non-linear analysis of similarity between EEG recordings. NeuroReport, 10:2149–2155, 1999.

    Article  Google Scholar 

  32. J.C. Sackellares, L.D. Iasemidis, R.L. Gilmore, and S.N. Roper. Epileptic seizures as neural resetting mechanisms. Epilepsia, 38(S3):189, 1997.

    Google Scholar 

  33. J.C. Sackellares, L.D. Iasemidis, R.L. Gilmore, and S.N. Roper. Epilepsy - When chaos fails. In K. Lehnertz, J. Arnhold, P. Grassberger, and C.E. Elger, editors, Chaos in the Brain? World Scientific, 2002.

    Google Scholar 

  34. J.C. Sackellares, L.D. Iasemidis, and D.-S. Shiau. Detection of the preictal transition in scalp EEG. Epilepsia, 40(S7):176, 1999.

    Google Scholar 

  35. D.-S. Shiau, Q. Luo, S.L. Gilmore, S.N. Roper, P.M. Pardalos, J.C. Sackellares, and L.D. Iasemidis. Epileptic seizures resetting revisited. Epilepsia, 41(S7):208–209, 2000.

    Google Scholar 

  36. A.Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano. Determining Lyapunov exponents from a time series. Physica D, 16:285–317, 1985.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Art Chaovalitwongse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chaovalitwongse, W.A., Suharitdamrong, W., Pardalos, P. (2009). Time—Frequency Analysis of Brain Neurodynamics. In: Gao, D., Sherali, H. (eds) Advances in Applied Mathematics and Global Optimization. Advances in Mechanics and Mathematics, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75714-8_4

Download citation

Publish with us

Policies and ethics