NMR Quantum Computing

  • Zhigang Zhang
  • Goong Chen
  • Zijian Diao
  • Philip R. Hemmer
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 17)


Quantum computing is at the forefront of scientific and technological research and development of the 21st century. NMR quantum computing is one the most mature technologies for implementing quantum computation. It utilizes the motion of spins of nuclei in custom-designed molecules manipulated by RF pulses. The motion is on a nano- or microscopic scale governed by the Schrödinger equation in quantum mechanics. In this chapter, we explain the basic ideas and principles of NMR quantum computing, including basic atomic physics, NMR quantum gates, and operations. New progress in optically addressed solid-state NMR is expounded. Examples of Shor’s algorithm for factorization of composite integers and the quantum lattice-gas algorithm for the diffusion partial differential equation are also illustrated.


Nuclear Magnetic Resonance Quantum Computer Quantum Algorithm Quantum Circuit Quantum Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Abe, K.M. Itoh, T.D. Ladd, J.R. Goldman, F. Yamaguchi, and Y. Yamamoto,Solid-state silicon NMR quantum computer, J. Superconduct. Incorporating NovelMagnetism J. Superconduct. Incorporating 16 (2003), 1, 175–178.Google Scholar
  2. 2.
    A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T.Sleator, J. Smolin, and H. Weinfurter, Elementary gates for quantum computation, quant-ph/ 9503016.Google Scholar
  3. 3.
  4. 4.
    P. Benioff, The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Stat. Phys. 22 (1980), 563–591.MathSciNetCrossRefGoogle Scholar
  5. 5.
    C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (1984), IEEE, New York, 175–179.Google Scholar
  6. 6.
    C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, Teleporting an unknown quantum state via dual classical and EPR channels, Phys. Rev. Lett 70 (1993), 1895–1899.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    C.H. Bennett, P. Shor, Quantum information theory, IEEE Trans. Inf. Theory 44 (1998), 2724–2742.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    G.P. Berman, A.A. Ezhov, D.I. Kamenev, and J. Yepez, Simulation of the diffusion equation on a type-II quantum computer, Phys. Rev. A 66(2002), 012310.CrossRefGoogle Scholar
  9. 9.
    E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput. 26 (1997), 1411–1473.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    F. Bloch, Nuclear induction, Phys. Rev. 70 (1946), 460–474.CrossRefGoogle Scholar
  11. 11.
    D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(1997), 575–579.CrossRefGoogle Scholar
  12. 12.
    G. Burkard, D. Loss and D. DiVincenzo, Coupled quantum dots as quantum gates, Phys. Rev B. 59(1999), 2070–2078.CrossRefGoogle Scholar
  13. 13.
    G. Chen, D.A. Church, B-G. Englert and M.S. Zubairy, Mathematical models of contemporary elementary quantum computing devices, in Quantum Control: Math ematical and Numerical Challenges (A.D. Bandrauk, M.C. Delfour and C. Le Bris, ed.), CRM Proc. & Lecture Notes, Vol. 33(, Amer. Math. Soc., Providence, R.I., 2003, 79–117.Google Scholar
  14. 14.
    A.M. Childs, I.L. Chuang, and D.W. Leung, Realization of quantum process tomography in NMR, Phys. Rev. A.64 (2001), 012314.CrossRefGoogle Scholar
  15. 15.
    I.L. Chuang, L.M.K. Vandersypen, X. Zhou, D.W. Leung, and S. Lloyd, Experimental realization of a quantum algorithm, Nature 393(1998), 143–146.CrossRefGoogle Scholar
  16. 16.
    I.L. Chuang, Quantum computation with nuclear magnetic resonance, in Introduction to Quantum Computation and Information , edited by H. Lo, S. Popescu, and T. Spiller, World Scientific, Singapore, 1998.Google Scholar
  17. 17.
    I.L. Chuang, Y. Yamamoto, Simple quantum computer, Phys. Rev. A 52(1995), 5, 3489–3496.CrossRefGoogle Scholar
  18. 18.
    D.G. Cory, M.D. Price, and T.F. Havel, Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing, Physica D 120 (1998), 82–101.CrossRefGoogle Scholar
  19. 19.
    D.G. Cory, A.F. Fahmy, and T.F. Havel, Ensemble quantum computing by NMR spectroscopy, Proc. Natl. Acad. Sci. USA 94 (1997), 1634–1639.CrossRefGoogle Scholar
  20. 20.
    D.G. Cory, R. Laflamme, and E. Knill et al., NMR based quantum information processing: Achievement and prospect, Fortschr. Phys. 48(2000), 875–907.CrossRefGoogle Scholar
  21. 21.
    H.K. Cummings, and J.A. Jones, Use of composite rotations to correct systematic errors in NMR quantum computation, New J. Phys. 2 (2000) 6.1–6.12.Google Scholar
  22. 22.
    D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. Roy. Soc. Lond. A 400 (1985), 97.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    D. Deutsch, Quantum computational networks, Proc. Roy. Soc. Lond. A 425 (1989), 73.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computer, Proc. Roy. Soc. Lond. A 439(1992), 553–558.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    D.P. DiVincenzo, Two-bit quantum gates are universal for quantum computation, Phys. Rev. A 51 (1995), 1015–1022.CrossRefGoogle Scholar
  26. 26.
    K. Dorai, and D. Suter, Efficient implementations of the quantum Fourier transform: an experimental perspective, Int. J. Quant. Inf. 3(2005), 2, 413–424.MATHCrossRefGoogle Scholar
  27. 27.
    K. Dorai, Arvind, and A. Kumar, Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR, Phys. Rev. A 61(2000), 042306.Google Scholar
  28. 28.
  29. 29.
    A. Ekert, Quantum cryptography based on Bell’s Theorem, Phys. Rev. Lett. 67 (1991), 661–663.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    A. Ekert and R. Jozsa, Quantum computation and Shor’s factoring algorithm, Rev. Modern Phys. 68 (1996), 3, 733–753.MathSciNetCrossRefGoogle Scholar
  31. 31.
    J.W. Emsley, J. Feeney and L.H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon Press, Oxford, 1965.Google Scholar
  32. 32.
    R.W. Equall, Y. Sun, R.M. Macfarlane, Ultraslow optical dephasing In Eu-3+- Y2SiO5, Phys. Rev. Lett. 72 (1994), 2179–2181.CrossRefGoogle Scholar
  33. 33.
    X. Fang, X. Zhu, M. Feng, X. Mao, and F. Du, Experimental implementation of dense coding using nuclear magnetic resonance, Phys. Rev. A 61 (2000), 022307.CrossRefGoogle Scholar
  34. 34.
    S. Fernbach, W.g. Proctor, Spin-Echo Memory Device, J. Appl. Phys. 26 (1955), 2, 170–181.CrossRefGoogle Scholar
  35. 35.
    R.P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21 (1982), 467.MathSciNetCrossRefGoogle Scholar
  36. 36.
    E.M. Fortunato, M.A. Pravia, and N. Boulant et al., Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing, J. Chem. Phys. 116(2002), Issue 17, 7599–7606.CrossRefGoogle Scholar
  37. 37.
    E. Fraval, M.J. Sellars, J.J. Longdell, Dynamic decoherence control of a solid-state nuclear-quadrupole qubit, Phys. Rev. Lett. 95 (2005), 030506.CrossRefGoogle Scholar
  38. 38.
    E. Fraval, M.J. Sellars, J.J. Longdell, Method of extending hyperfine coherence times in Pr3+: Y2SiO5, Phys. Rev. Lett. 92(2004), 077601.CrossRefGoogle Scholar
  39. 39.
    R. Freeman, Shaped radiofrequency pulses in high resolution NMR, J. Prog. Nucl. Magnetic Resonance Spectroscopy 32(1998), 59–106.CrossRefGoogle Scholar
  40. 40.
    C.A. Fuchs, Distinguishability and accessible information in quantum theory, Ph.D. Dissertation, University of New Mexico; quant-ph/ 9601020.Google Scholar
  41. 41.
    B. Fung, and V.L. Ermakov, A simple method for the preparation of pseudopure states in nuclear magnetic resonance quantum information processing, J. Chem. Phys. 121 (2004), 17, 8410–8414.CrossRefGoogle Scholar
  42. 42.
    N. Gershenfeld, and I.L. Chuang, Bulk spin-resonance quantum computation, Science 275 (1997), 350–356.MathSciNetCrossRefGoogle Scholar
  43. 43.
    S.J. Glaser, T. Schulte-Herbruggen, M. Sieveking, O. Schedletzky, N.C. Nielsen, O.W. Sorensen, and C. Griesinger, Unitary control in quantum ensembles: Maximizing signal intensity in coherent spectroscopy, Science 280(1998), Issue 5362, 421–424.CrossRefGoogle Scholar
  44. 44.
    D. Gottesman, and I.L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402 (1999), 390— 393.CrossRefGoogle Scholar
  45. 45.
    J.R. Goldman, T.D. Ladd, F. Yamaguchi, and Y. Yamamoto, Magnet designs for a crystal-lattice quantum computer, Appl. Phys A. 71 (2000), 11–17.Google Scholar
  46. 46.
    L.G. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(1997), 325.CrossRefGoogle Scholar
  47. 47.
    A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. vonBorczyskowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science 276 (1997), Issue 5321, 2012–2014.CrossRefGoogle Scholar
  48. 48.
    P.C. Hansen, M.J.M. Leask, B.M. Wanklyn, Y. Sun, R.L. Cone, M.M. Abraham, Spectral hole burning and optically detected nuclear quadrupole resonance in fluxgrown stoichiometric europium vanadate crystals, Phys. Rev. B 56 (1997), 7918–7929.CrossRefGoogle Scholar
  49. 49.
    P.R. Hemmer, A.V. Turukhin, M.S. Shahriar, and J.A. Musser, Raman excited spin coherences in N-V diamond, Opt. Lett. 26 (2001), 361–363.CrossRefGoogle Scholar
  50. 50.
    K. Holliday, M. Croci, E. Vauthey,U.P. Wild, Spectral hole-burning and holography in an Y2SiO5Pr3+ crystal, Phys. Rev. B 47 (1993), 14741–14752.CrossRefGoogle Scholar
  51. 51.
  52. 52.
    F. Jelezko, J. Wrachtrup, Quantum information processing in diamond, quantph/ 0510152.Google Scholar
  53. 53.
    F. Jelezko, T. Gaebel, I. Popa,M. Domhan, A. Gruber, J. Wrachtrup, Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate, Phys. Rev. Lett. 93 (2004), 130501.CrossRefGoogle Scholar
  54. 54.
    J.A. Jones, Robust quantum information processing with techniques from liquidstate NMR, Phil. Trans. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 361 (2003), 1429–1440.CrossRefGoogle Scholar
  55. 55.
    J.A. Jones, Robust Ising gates for practical quantum computation, Phys. Rev. A 67 (2003), 012317.CrossRefGoogle Scholar
  56. 56.
    J.A. Jones, NMR quantum computation: A critical evaluation, Fortschr. Phys. 48 (2000), 909–924.CrossRefGoogle Scholar
  57. 57.
    J.A. Jones, and E. Knill, Efficient refocusing of one-spin and two-spin interaction for NMR quantum computation, J. Magnetic Resonance 141 (1999), 22–325.CrossRefGoogle Scholar
  58. 58.
    J.A. Jones and M. Mosca, Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer, J. Chem. Phys. 109 (1998), 5, 1648–1653. Another short version can be found at Nature 393 (1998), 344–346.Google Scholar
  59. 59.
    B.E. Kane, A silicon-based nuclear spin quantum computer, Nature 393 (1998), 133— 137.CrossRefGoogle Scholar
  60. 60.
    N. Khaneja, R. Brockett, and S.J. Glaser, Time optimal control in spin system, Phys. Rev. A 63 (2001), 032308.CrossRefGoogle Scholar
  61. 61.
    N. Khaneja, S.J. Glaser, and R. Brockett, Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherent transfer, Phys. Rev. A 65 (2002), 032301.MathSciNetCrossRefGoogle Scholar
  62. 62.
    A.K. Khitrin, H. Sun, and B.M. Fung, Method of multifrequency excitation for creating pseudopure states for NMR quantum computing, Phys. Rev. A 63 (2001), 020301.CrossRefGoogle Scholar
  63. 63.
    E. Knill, I. Chuang, and R. Laflamme, Effective pure states for bulk quantum computation, Phys. Rev. A 57 (1998), 3348.MathSciNetCrossRefGoogle Scholar
  64. 64.
    E. Knill, R. Laflamme, R. Martinez, and C.H. Tseng, An algorithm benchmark for quantum information processing, Nature 404 (2000), 368–370.CrossRefGoogle Scholar
  65. 65.
    E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne, Benchmarking quantum computers: The five-qubit error correcting code, Phys. Rev. Lett. 86 (2001), 5811— 5814.CrossRefGoogle Scholar
  66. 66.
    E. Kupce, and R. Freeman, Close encounters between soft pulses, J. Magnetic Resonance Ser A. 112 (1995), 261–264.CrossRefGoogle Scholar
  67. 67.
    T.D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, and K.M. Itoh, Coherence time of decoupled nuclear spins in silicon, Phys. Rev. B 71 (2005), 014401.Google Scholar
  68. 68.
    T.D. Ladd, J.R. Goldman, F. Yamaguchi, and Y. Yamamoto, All-silicon quantum computer, Phys. Rev. Lett. Bold (2002), No. 1, 017901.Google Scholar
  69. 69.
    R. Laflamme, E. Knill, C. Negrevergne, R. Martinez, S. Sinha, and D.G. Cory, Introduction to NMR quantum information processing, in Experimental Quantum Computation and Information, Proceeding of the International School of Physics “Enrico Fermi,” edited by F. De Martini and C. Monroe, IOS Press, Amsterdam, Netherlands, 2002.Google Scholar
  70. 70.
    G.M. Leskowitz, N. Ghaderi, R.A. Olsen, and L.J.Mueller, Three-qubit nuclear magnetic resonance quantum information processing with a single-crystal solid, J. Chem. Phys. 119 (2003), 1643–1649.CrossRefGoogle Scholar
  71. 71.
    D.W. Leung, I.L. Chuang, F. Yamaguchi, and Y. Yamamoto, Efficient implementation of coupled logic gates for quantum computation, Phys. Rev. A 61 (2000), 042310.CrossRefGoogle Scholar
  72. 72.
    M.H. Levitt, Composite pulses, Prog. Nucl. Magnetic Resonance Spectroscopy 18 (1986), 61–122.CrossRefGoogle Scholar
  73. 73.
    N. Linden, B. Herve, R.J. Carbajo and R. Freeman, Pulse sequences for NMR quantum computers: How to manipulate nuclear spins while freezing the motion of coupled neighbors, Chem. Phys. Lett. 305 (1999), 28–34.CrossRefGoogle Scholar
  74. 74.
    N. Linden, H. Barjat, and R. Freeman, An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer, Chem. Phys. Lett. 296 (1998), 61–67.CrossRefGoogle Scholar
  75. 75.
    S.J. Lomonaco, Shor’s Quantum Factoring Algorithm, quant-ph/0010034.Google Scholar
  76. 76.
    G. Long, H. Yan, Y. Li, C. Lu, J. Tao, and H. Chen et al., Experimental NMR realization of a generalized quantum search algorithm, Phys. Lett. A 286 (2001), 121— 126.MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    J.J. Longdell, M.J. Sellars, and N.B. Manson, Hyperfine interaction in ground and excited states of praseodymium-doped yttrium orthosilicate, Phys. Rev. B 66 (2002), 035101.CrossRefGoogle Scholar
  78. 78.
    J.J. Longdell and M.J. Sellars, Selecting ensembles for rare earth quantum computation, quant-ph/0310105, 2003.Google Scholar
  79. 79.
    J.J. Longdell, M.J. Sellars, N.B. Manson, Demonstration of conditional quantum phase shift between ions in a solid, Phys. Rev. Lett. 93 (2004), 130503.CrossRefGoogle Scholar
  80. 80.
    M.D. Lukin and P.R. Hemmer, Quantum entanglement via optical control of atom— atom interactions, Phys. Rev. Lett. 84 (2000), 2818–2821.CrossRefGoogle Scholar
  81. 81.
    R.M. Macfarlane, High-resolution laser spectroscopy of rare-earth doped insulators: A personal perspective, J. Luminescence 100 (2002), 1–4, 1–20.CrossRefGoogle Scholar
  82. 82.
    M.L. Martin, and G.J. Martin, Practical NMR Spectroscopy, Heyden, London, UK, 1980.Google Scholar
  83. 83.
    G.D. Mateescu and A. Valeriu, 2D NMR : Density Matrix and Product Operator Treatment, PTR Prentice-Hall, New Jersey, 1993.Google Scholar
  84. 84.
    R. Marx, A.F. Fahmy, J.M. Myers, W. Bermel, and S.J. Glaser, Approaching five-bit NMR quantum computing, Phys. Rev. A 62 (2000), 012310.CrossRefGoogle Scholar
  85. 85.
    M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000.MATHGoogle Scholar
  86. 86.
    M.A. Nielson and I.L. Chuang, Programmable quantum gate arrays, Phys. Rev. Lett. 79 (1997), 2, 321–323.MathSciNetCrossRefGoogle Scholar
  87. 87.
    M.A. Nielson, E. Knill, and R. Laflamme, Complete quantum teleportation using NMR, Nature 396 (1995), 52–55.CrossRefGoogle Scholar
  88. 88.
    J. Normand, A Lie Group: Rotations in Quantum Mechanics, North-Holland, New York, 1980.Google Scholar
  89. 89.
    S.L. Patt, Single- and multiple-frequency-shifted laminar pulses, J. Magnetic Resonance 96 (1992), 1, 94–102.Google Scholar
  90. 90.
    A.O. Pittenger, An Introduction to Quantum Computing Algorithms, Birkh¨auser, Boston, 2000.MATHCrossRefGoogle Scholar
  91. 91.
    C.P. Poole, and H.A. Farach, Theory of Magnetic Resonance, Wiley, New York, 1987.Google Scholar
  92. 92.
    I. Popa, T. Gaebel, M. Domhan, C. Wittmann, F. Jelezko, and J. Wrachtrup, Energy levels and decoherence properties of single electron and nuclear spins in a defect center in diamond, quant-ph/0409067, 2004Google Scholar
  93. 93.
    M.A. Pravia, Z. Chen, J. Yepez, and D.G. Cory, Towards a NMR implementation of a quantum lattice gas algorithm, Comput. Phys. Commun. 146 (2002), Issue 3, 339–344.MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    G.J. Pryde, M.J. Sellars, N.B. Manson, Solid state coherent transient measurements using hard optical pulses, Phys. Rev. Lett. 84 (2000), 1152–1155.CrossRefGoogle Scholar
  95. 95.
    R.L. Rivest, A. Shamir, and L. Adleman, A method of obtaining digital signature and public-key cryptosystems, Commun. ACM 21 (1978), 120–126.MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26( 1997), 5, 1484–1509.MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    D. Simon, On the power of quantum computation, Proceedings, 35th Annual Symposium on Foundations of Computer Science (1994), IEEE Press, Los Alamitos, CA, 116–123.Google Scholar
  98. 98.
    S. Somaroo, C.H. Tseng, T.F. Havel, R. Laflamme, and D.G. Cory, Quantum simulation on a quantum computer, Phys. Rev. Lett. 82 (1999), 5381–5384.CrossRefGoogle Scholar
  99. 99.
    O.W. Sorenson, Polorization transfer experiments in high-resolution NMR spectroscopy, Prog. Nucl. Magnetic Resonance Spectroscopy 21 (1989), Issue 6, 503–569.CrossRefGoogle Scholar
  100. 100.
    M. Steffen, L.M.K. Vandersypen, I.L. Chuang, Toward quantumcomputation: A fivequbit quantum processor, IEEE Micro, 24–34, 2001.Google Scholar
  101. 101.
    A. Szabo, Spin dependence of optical dephasing in ruby - The frozen core, Opt. Lett. 8 (1983), 9, 486–487.CrossRefGoogle Scholar
  102. 102.
    J.M. Taylor, H.A. Engel, W. Dur, A. Yacoby, C.M. Marcus, P. Zoller, M.D. Lukin, Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins, Nature Phys. 1 (2005), 3, 177–183.CrossRefGoogle Scholar
  103. 103.
    A.M. Turing, On computable numbers, with an application to the Entscheidungs problem, Proc. Lond. Math. Soc. 2 42 (1936), 230.Google Scholar
  104. 104.
    G. Vahala, J. Yepez, and L. Vahala, Quantum lattice gas representation of some classical solitons, Phys. Lett. A 310 (2003), 187–196.MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    L. Vahala, G. Vahala, and J. Yepez, Lattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence, Phys. Lett. A 306 (2003), 227–234.MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    L.M.K. Vandersypen, C.S. Yannoni, M.H. Sherwood, and I.L. Chuang, Realization of logically labeled effective pure states for bulk quantum computation, Phys. Rev. Lett. 83 (1999), 3085.CrossRefGoogle Scholar
  107. 107.
    L.M.K. Vandersypen, M. Steffen, G. Breyta, C. Yannoni, R. Cleve, and I.L. Chuang, Experimental realization of an order-finding algorithm with an NMR quantum computer, Phys. Rev. Lett. 85 (2000), 5452.CrossRefGoogle Scholar
  108. 108.
    L.M.K. Vandersypen, and M. Steffen, M.H. Sherwood, C. Yannoni, G. Breyta, and I.L. Chuang, Implementation of a three-quantum-bit search algorithm, Appl. Phys. Lett. 76 (2000), 5, 646–648.CrossRefGoogle Scholar
  109. 109.
    L.M.K. Vandersypen, I.L. Chuang, NMR techniques for quantum control and computation, Rev. Modern Phys. 76(2004), 4, 1037–1069.CrossRefGoogle Scholar
  110. 110.
    E. VanOort, N.B. Manson, M. Glasbeek, Optically detected spin coherence of the diamond N-V center in its triplet ground-state, J. Phys. C Solid State Phys. 21 (1988), 4385–4391.CrossRefGoogle Scholar
  111. 111.
    L.M.K. Vandersypen, M. Steffen, G. Breyta, et al., Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414 (2001), 883–887.CrossRefGoogle Scholar
  112. 112.
    V. Vedral, A. Barenco, and A. Ekert, Quantum network for elementary arithmetic operations, Phys. Rev. A 54 (1996), 147–153.MathSciNetCrossRefGoogle Scholar
  113. 113.
    C. Wei, N.B. Manson, Observation of electromagnetically induced transparency within an electron spin resonance transition, J. Opt. B Quantum Semiclassical Opt. 1 (1999), 464–468.CrossRefGoogle Scholar
  114. 114.
    Y.S. Weinstein, M.A. Pravia, E.M. Fortunato, S. Lloyd, and D.G. Cory, Implementation of the quantum Fourier transform, Phys. Rev. Lett. 86 (2001), 1889–1891.CrossRefGoogle Scholar
  115. 115.
    Wikipedia, http://en.wikipedia.org/wiki/Nuclear magnetic resonance.
  116. 116.
    F. Yamaguchi, and Y. Yamamoto, Crystal lattice quantum computer, Microelectron. Eng. 47 (1999), 273–275.CrossRefGoogle Scholar
  117. 117.
    C. Yannoni, M.H. Sherwood, D.C. Miller, I.L. Chuang, L.M.K. Vandersypen, and M.G. Kubines, Nuclear magnetic resonance quantum computing using liquid crystal solvents, Appl. Phys. Lett. 75 (1999), No. 22, 3563–3562.CrossRefGoogle Scholar
  118. 118.
    C.C. Yao, Quantum circuit complexity, Proc. of the 34th Ann. IEEE Symp. on Foundations of Computer Science (1993), 352–361.Google Scholar
  119. 119.
    J. Yepez, Quantum lattice-gas model for the diffusion equation, Int. J. Modern Phys. C 12 (2001), 9, 1285–1303.MathSciNetCrossRefGoogle Scholar
  120. 120.
    J. Yepez, Type-II quantum computers, Int. J. Modern Phys. C 12 (2001), 9, 1273– 1284.MathSciNetCrossRefGoogle Scholar
  121. 121.
    J. Yepez, and B. Boghosian, An efficient and accurate quantum lattice-gas model for the many-body Schr¨odinger wave equation, Comput. Phys. Commun. 146 (2002), Issue 3, 280–294.MathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    J. Zhang, Z. Lu, L. Shan, and Z. Deng, Synthesizing NMR analogs of Einstein- Podolsky-Rosen state using the generalized Grover’s algorithm, Phys. Rev. A 66 (2002), 044308.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zhigang Zhang
    • 1
  • Goong Chen
    • 1
  • Zijian Diao
    • 2
  • Philip R. Hemmer
    • 3
  1. 1.Department of MathematicsTexas A&M University, College StationTXUSA
  2. 2.Department of MathematicsOhio UniversityClairsvilleUSA
  3. 3.Department of Electrical and Computer EngineeringTexas A&M University, College StationTXUSA

Personalised recommendations