Skip to main content

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 17))

Summary

Quantum computing is at the forefront of scientific and technological research and development of the 21st century. NMR quantum computing is one the most mature technologies for implementing quantum computation. It utilizes the motion of spins of nuclei in custom-designed molecules manipulated by RF pulses. The motion is on a nano- or microscopic scale governed by the Schrödinger equation in quantum mechanics. In this chapter, we explain the basic ideas and principles of NMR quantum computing, including basic atomic physics, NMR quantum gates, and operations. New progress in optically addressed solid-state NMR is expounded. Examples of Shor’s algorithm for factorization of composite integers and the quantum lattice-gas algorithm for the diffusion partial differential equation are also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Abe, K.M. Itoh, T.D. Ladd, J.R. Goldman, F. Yamaguchi, and Y. Yamamoto,Solid-state silicon NMR quantum computer, J. Superconduct. Incorporating NovelMagnetism J. Superconduct. Incorporating 16 (2003), 1, 175–178.

    Google Scholar 

  2. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T.Sleator, J. Smolin, and H. Weinfurter, Elementary gates for quantum computation, quant-ph/ 9503016.

    Google Scholar 

  3. S. Bartlett, http://www.physics.usyd.edu.au/~bartlett/ISIT2005/.

  4. P. Benioff, The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Stat. Phys. 22 (1980), 563–591.

    Article  MathSciNet  Google Scholar 

  5. C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (1984), IEEE, New York, 175–179.

    Google Scholar 

  6. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, Teleporting an unknown quantum state via dual classical and EPR channels, Phys. Rev. Lett 70 (1993), 1895–1899.

    Article  MathSciNet  MATH  Google Scholar 

  7. C.H. Bennett, P. Shor, Quantum information theory, IEEE Trans. Inf. Theory 44 (1998), 2724–2742.

    Article  MathSciNet  MATH  Google Scholar 

  8. G.P. Berman, A.A. Ezhov, D.I. Kamenev, and J. Yepez, Simulation of the diffusion equation on a type-II quantum computer, Phys. Rev. A 66(2002), 012310.

    Article  Google Scholar 

  9. E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput. 26 (1997), 1411–1473.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Bloch, Nuclear induction, Phys. Rev. 70 (1946), 460–474.

    Article  Google Scholar 

  11. D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(1997), 575–579.

    Article  Google Scholar 

  12. G. Burkard, D. Loss and D. DiVincenzo, Coupled quantum dots as quantum gates, Phys. Rev B. 59(1999), 2070–2078.

    Article  Google Scholar 

  13. G. Chen, D.A. Church, B-G. Englert and M.S. Zubairy, Mathematical models of contemporary elementary quantum computing devices, in Quantum Control: Math ematical and Numerical Challenges (A.D. Bandrauk, M.C. Delfour and C. Le Bris, ed.), CRM Proc. & Lecture Notes, Vol. 33(, Amer. Math. Soc., Providence, R.I., 2003, 79–117.

    Google Scholar 

  14. A.M. Childs, I.L. Chuang, and D.W. Leung, Realization of quantum process tomography in NMR, Phys. Rev. A.64 (2001), 012314.

    Article  Google Scholar 

  15. I.L. Chuang, L.M.K. Vandersypen, X. Zhou, D.W. Leung, and S. Lloyd, Experimental realization of a quantum algorithm, Nature 393(1998), 143–146.

    Article  Google Scholar 

  16. I.L. Chuang, Quantum computation with nuclear magnetic resonance, in Introduction to Quantum Computation and Information , edited by H. Lo, S. Popescu, and T. Spiller, World Scientific, Singapore, 1998.

    Google Scholar 

  17. I.L. Chuang, Y. Yamamoto, Simple quantum computer, Phys. Rev. A 52(1995), 5, 3489–3496.

    Article  Google Scholar 

  18. D.G. Cory, M.D. Price, and T.F. Havel, Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing, Physica D 120 (1998), 82–101.

    Article  Google Scholar 

  19. D.G. Cory, A.F. Fahmy, and T.F. Havel, Ensemble quantum computing by NMR spectroscopy, Proc. Natl. Acad. Sci. USA 94 (1997), 1634–1639.

    Article  Google Scholar 

  20. D.G. Cory, R. Laflamme, and E. Knill et al., NMR based quantum information processing: Achievement and prospect, Fortschr. Phys. 48(2000), 875–907.

    Article  Google Scholar 

  21. H.K. Cummings, and J.A. Jones, Use of composite rotations to correct systematic errors in NMR quantum computation, New J. Phys. 2 (2000) 6.1–6.12.

    Google Scholar 

  22. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. Roy. Soc. Lond. A 400 (1985), 97.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Deutsch, Quantum computational networks, Proc. Roy. Soc. Lond. A 425 (1989), 73.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computer, Proc. Roy. Soc. Lond. A 439(1992), 553–558.

    Article  MathSciNet  MATH  Google Scholar 

  25. D.P. DiVincenzo, Two-bit quantum gates are universal for quantum computation, Phys. Rev. A 51 (1995), 1015–1022.

    Article  Google Scholar 

  26. K. Dorai, and D. Suter, Efficient implementations of the quantum Fourier transform: an experimental perspective, Int. J. Quant. Inf. 3(2005), 2, 413–424.

    Article  MATH  Google Scholar 

  27. K. Dorai, Arvind, and A. Kumar, Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR, Phys. Rev. A 61(2000), 042306.

    Google Scholar 

  28. J.C. Edwards, http://www.process-nmr.com/nmr.htm

  29. A. Ekert, Quantum cryptography based on Bell’s Theorem, Phys. Rev. Lett. 67 (1991), 661–663.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Ekert and R. Jozsa, Quantum computation and Shor’s factoring algorithm, Rev. Modern Phys. 68 (1996), 3, 733–753.

    Article  MathSciNet  Google Scholar 

  31. J.W. Emsley, J. Feeney and L.H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon Press, Oxford, 1965.

    Google Scholar 

  32. R.W. Equall, Y. Sun, R.M. Macfarlane, Ultraslow optical dephasing In Eu-3+- Y2SiO5, Phys. Rev. Lett. 72 (1994), 2179–2181.

    Article  Google Scholar 

  33. X. Fang, X. Zhu, M. Feng, X. Mao, and F. Du, Experimental implementation of dense coding using nuclear magnetic resonance, Phys. Rev. A 61 (2000), 022307.

    Article  Google Scholar 

  34. S. Fernbach, W.g. Proctor, Spin-Echo Memory Device, J. Appl. Phys. 26 (1955), 2, 170–181.

    Article  Google Scholar 

  35. R.P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21 (1982), 467.

    Article  MathSciNet  Google Scholar 

  36. E.M. Fortunato, M.A. Pravia, and N. Boulant et al., Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing, J. Chem. Phys. 116(2002), Issue 17, 7599–7606.

    Article  Google Scholar 

  37. E. Fraval, M.J. Sellars, J.J. Longdell, Dynamic decoherence control of a solid-state nuclear-quadrupole qubit, Phys. Rev. Lett. 95 (2005), 030506.

    Article  Google Scholar 

  38. E. Fraval, M.J. Sellars, J.J. Longdell, Method of extending hyperfine coherence times in Pr3+: Y2SiO5, Phys. Rev. Lett. 92(2004), 077601.

    Article  Google Scholar 

  39. R. Freeman, Shaped radiofrequency pulses in high resolution NMR, J. Prog. Nucl. Magnetic Resonance Spectroscopy 32(1998), 59–106.

    Article  Google Scholar 

  40. C.A. Fuchs, Distinguishability and accessible information in quantum theory, Ph.D. Dissertation, University of New Mexico; quant-ph/ 9601020.

    Google Scholar 

  41. B. Fung, and V.L. Ermakov, A simple method for the preparation of pseudopure states in nuclear magnetic resonance quantum information processing, J. Chem. Phys. 121 (2004), 17, 8410–8414.

    Article  Google Scholar 

  42. N. Gershenfeld, and I.L. Chuang, Bulk spin-resonance quantum computation, Science 275 (1997), 350–356.

    Article  MathSciNet  Google Scholar 

  43. S.J. Glaser, T. Schulte-Herbruggen, M. Sieveking, O. Schedletzky, N.C. Nielsen, O.W. Sorensen, and C. Griesinger, Unitary control in quantum ensembles: Maximizing signal intensity in coherent spectroscopy, Science 280(1998), Issue 5362, 421–424.

    Article  Google Scholar 

  44. D. Gottesman, and I.L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402 (1999), 390— 393.

    Article  Google Scholar 

  45. J.R. Goldman, T.D. Ladd, F. Yamaguchi, and Y. Yamamoto, Magnet designs for a crystal-lattice quantum computer, Appl. Phys A. 71 (2000), 11–17.

    Google Scholar 

  46. L.G. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(1997), 325.

    Article  Google Scholar 

  47. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. vonBorczyskowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science 276 (1997), Issue 5321, 2012–2014.

    Article  Google Scholar 

  48. P.C. Hansen, M.J.M. Leask, B.M. Wanklyn, Y. Sun, R.L. Cone, M.M. Abraham, Spectral hole burning and optically detected nuclear quadrupole resonance in fluxgrown stoichiometric europium vanadate crystals, Phys. Rev. B 56 (1997), 7918–7929.

    Article  Google Scholar 

  49. P.R. Hemmer, A.V. Turukhin, M.S. Shahriar, and J.A. Musser, Raman excited spin coherences in N-V diamond, Opt. Lett. 26 (2001), 361–363.

    Article  Google Scholar 

  50. K. Holliday, M. Croci, E. Vauthey,U.P. Wild, Spectral hole-burning and holography in an Y2SiO5Pr3+ crystal, Phys. Rev. B 47 (1993), 14741–14752.

    Article  Google Scholar 

  51. J.P. Hornak, http://www.cis.rit.edu/htbooks/nmr/inside.htm.

  52. F. Jelezko, J. Wrachtrup, Quantum information processing in diamond, quantph/ 0510152.

    Google Scholar 

  53. F. Jelezko, T. Gaebel, I. Popa,M. Domhan, A. Gruber, J. Wrachtrup, Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate, Phys. Rev. Lett. 93 (2004), 130501.

    Article  Google Scholar 

  54. J.A. Jones, Robust quantum information processing with techniques from liquidstate NMR, Phil. Trans. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 361 (2003), 1429–1440.

    Article  Google Scholar 

  55. J.A. Jones, Robust Ising gates for practical quantum computation, Phys. Rev. A 67 (2003), 012317.

    Article  Google Scholar 

  56. J.A. Jones, NMR quantum computation: A critical evaluation, Fortschr. Phys. 48 (2000), 909–924.

    Article  Google Scholar 

  57. J.A. Jones, and E. Knill, Efficient refocusing of one-spin and two-spin interaction for NMR quantum computation, J. Magnetic Resonance 141 (1999), 22–325.

    Article  Google Scholar 

  58. J.A. Jones and M. Mosca, Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer, J. Chem. Phys. 109 (1998), 5, 1648–1653. Another short version can be found at Nature 393 (1998), 344–346.

    Google Scholar 

  59. B.E. Kane, A silicon-based nuclear spin quantum computer, Nature 393 (1998), 133— 137.

    Article  Google Scholar 

  60. N. Khaneja, R. Brockett, and S.J. Glaser, Time optimal control in spin system, Phys. Rev. A 63 (2001), 032308.

    Article  Google Scholar 

  61. N. Khaneja, S.J. Glaser, and R. Brockett, Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherent transfer, Phys. Rev. A 65 (2002), 032301.

    Article  MathSciNet  Google Scholar 

  62. A.K. Khitrin, H. Sun, and B.M. Fung, Method of multifrequency excitation for creating pseudopure states for NMR quantum computing, Phys. Rev. A 63 (2001), 020301.

    Article  Google Scholar 

  63. E. Knill, I. Chuang, and R. Laflamme, Effective pure states for bulk quantum computation, Phys. Rev. A 57 (1998), 3348.

    Article  MathSciNet  Google Scholar 

  64. E. Knill, R. Laflamme, R. Martinez, and C.H. Tseng, An algorithm benchmark for quantum information processing, Nature 404 (2000), 368–370.

    Article  Google Scholar 

  65. E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne, Benchmarking quantum computers: The five-qubit error correcting code, Phys. Rev. Lett. 86 (2001), 5811— 5814.

    Article  Google Scholar 

  66. E. Kupce, and R. Freeman, Close encounters between soft pulses, J. Magnetic Resonance Ser A. 112 (1995), 261–264.

    Article  Google Scholar 

  67. T.D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, and K.M. Itoh, Coherence time of decoupled nuclear spins in silicon, Phys. Rev. B 71 (2005), 014401.

    Google Scholar 

  68. T.D. Ladd, J.R. Goldman, F. Yamaguchi, and Y. Yamamoto, All-silicon quantum computer, Phys. Rev. Lett. Bold (2002), No. 1, 017901.

    Google Scholar 

  69. R. Laflamme, E. Knill, C. Negrevergne, R. Martinez, S. Sinha, and D.G. Cory, Introduction to NMR quantum information processing, in Experimental Quantum Computation and Information, Proceeding of the International School of Physics “Enrico Fermi,” edited by F. De Martini and C. Monroe, IOS Press, Amsterdam, Netherlands, 2002.

    Google Scholar 

  70. G.M. Leskowitz, N. Ghaderi, R.A. Olsen, and L.J.Mueller, Three-qubit nuclear magnetic resonance quantum information processing with a single-crystal solid, J. Chem. Phys. 119 (2003), 1643–1649.

    Article  Google Scholar 

  71. D.W. Leung, I.L. Chuang, F. Yamaguchi, and Y. Yamamoto, Efficient implementation of coupled logic gates for quantum computation, Phys. Rev. A 61 (2000), 042310.

    Article  Google Scholar 

  72. M.H. Levitt, Composite pulses, Prog. Nucl. Magnetic Resonance Spectroscopy 18 (1986), 61–122.

    Article  Google Scholar 

  73. N. Linden, B. Herve, R.J. Carbajo and R. Freeman, Pulse sequences for NMR quantum computers: How to manipulate nuclear spins while freezing the motion of coupled neighbors, Chem. Phys. Lett. 305 (1999), 28–34.

    Article  Google Scholar 

  74. N. Linden, H. Barjat, and R. Freeman, An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer, Chem. Phys. Lett. 296 (1998), 61–67.

    Article  Google Scholar 

  75. S.J. Lomonaco, Shor’s Quantum Factoring Algorithm, quant-ph/0010034.

    Google Scholar 

  76. G. Long, H. Yan, Y. Li, C. Lu, J. Tao, and H. Chen et al., Experimental NMR realization of a generalized quantum search algorithm, Phys. Lett. A 286 (2001), 121— 126.

    Article  MathSciNet  MATH  Google Scholar 

  77. J.J. Longdell, M.J. Sellars, and N.B. Manson, Hyperfine interaction in ground and excited states of praseodymium-doped yttrium orthosilicate, Phys. Rev. B 66 (2002), 035101.

    Article  Google Scholar 

  78. J.J. Longdell and M.J. Sellars, Selecting ensembles for rare earth quantum computation, quant-ph/0310105, 2003.

    Google Scholar 

  79. J.J. Longdell, M.J. Sellars, N.B. Manson, Demonstration of conditional quantum phase shift between ions in a solid, Phys. Rev. Lett. 93 (2004), 130503.

    Article  Google Scholar 

  80. M.D. Lukin and P.R. Hemmer, Quantum entanglement via optical control of atom— atom interactions, Phys. Rev. Lett. 84 (2000), 2818–2821.

    Article  Google Scholar 

  81. R.M. Macfarlane, High-resolution laser spectroscopy of rare-earth doped insulators: A personal perspective, J. Luminescence 100 (2002), 1–4, 1–20.

    Article  Google Scholar 

  82. M.L. Martin, and G.J. Martin, Practical NMR Spectroscopy, Heyden, London, UK, 1980.

    Google Scholar 

  83. G.D. Mateescu and A. Valeriu, 2D NMR : Density Matrix and Product Operator Treatment, PTR Prentice-Hall, New Jersey, 1993.

    Google Scholar 

  84. R. Marx, A.F. Fahmy, J.M. Myers, W. Bermel, and S.J. Glaser, Approaching five-bit NMR quantum computing, Phys. Rev. A 62 (2000), 012310.

    Article  Google Scholar 

  85. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000.

    MATH  Google Scholar 

  86. M.A. Nielson and I.L. Chuang, Programmable quantum gate arrays, Phys. Rev. Lett. 79 (1997), 2, 321–323.

    Article  MathSciNet  Google Scholar 

  87. M.A. Nielson, E. Knill, and R. Laflamme, Complete quantum teleportation using NMR, Nature 396 (1995), 52–55.

    Article  Google Scholar 

  88. J. Normand, A Lie Group: Rotations in Quantum Mechanics, North-Holland, New York, 1980.

    Google Scholar 

  89. S.L. Patt, Single- and multiple-frequency-shifted laminar pulses, J. Magnetic Resonance 96 (1992), 1, 94–102.

    Google Scholar 

  90. A.O. Pittenger, An Introduction to Quantum Computing Algorithms, Birkh¨auser, Boston, 2000.

    Book  MATH  Google Scholar 

  91. C.P. Poole, and H.A. Farach, Theory of Magnetic Resonance, Wiley, New York, 1987.

    Google Scholar 

  92. I. Popa, T. Gaebel, M. Domhan, C. Wittmann, F. Jelezko, and J. Wrachtrup, Energy levels and decoherence properties of single electron and nuclear spins in a defect center in diamond, quant-ph/0409067, 2004

    Google Scholar 

  93. M.A. Pravia, Z. Chen, J. Yepez, and D.G. Cory, Towards a NMR implementation of a quantum lattice gas algorithm, Comput. Phys. Commun. 146 (2002), Issue 3, 339–344.

    Article  MathSciNet  MATH  Google Scholar 

  94. G.J. Pryde, M.J. Sellars, N.B. Manson, Solid state coherent transient measurements using hard optical pulses, Phys. Rev. Lett. 84 (2000), 1152–1155.

    Article  Google Scholar 

  95. R.L. Rivest, A. Shamir, and L. Adleman, A method of obtaining digital signature and public-key cryptosystems, Commun. ACM 21 (1978), 120–126.

    Article  MathSciNet  MATH  Google Scholar 

  96. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26( 1997), 5, 1484–1509.

    Article  MathSciNet  MATH  Google Scholar 

  97. D. Simon, On the power of quantum computation, Proceedings, 35th Annual Symposium on Foundations of Computer Science (1994), IEEE Press, Los Alamitos, CA, 116–123.

    Google Scholar 

  98. S. Somaroo, C.H. Tseng, T.F. Havel, R. Laflamme, and D.G. Cory, Quantum simulation on a quantum computer, Phys. Rev. Lett. 82 (1999), 5381–5384.

    Article  Google Scholar 

  99. O.W. Sorenson, Polorization transfer experiments in high-resolution NMR spectroscopy, Prog. Nucl. Magnetic Resonance Spectroscopy 21 (1989), Issue 6, 503–569.

    Article  Google Scholar 

  100. M. Steffen, L.M.K. Vandersypen, I.L. Chuang, Toward quantumcomputation: A fivequbit quantum processor, IEEE Micro, 24–34, 2001.

    Google Scholar 

  101. A. Szabo, Spin dependence of optical dephasing in ruby - The frozen core, Opt. Lett. 8 (1983), 9, 486–487.

    Article  Google Scholar 

  102. J.M. Taylor, H.A. Engel, W. Dur, A. Yacoby, C.M. Marcus, P. Zoller, M.D. Lukin, Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins, Nature Phys. 1 (2005), 3, 177–183.

    Article  Google Scholar 

  103. A.M. Turing, On computable numbers, with an application to the Entscheidungs problem, Proc. Lond. Math. Soc. 2 42 (1936), 230.

    Google Scholar 

  104. G. Vahala, J. Yepez, and L. Vahala, Quantum lattice gas representation of some classical solitons, Phys. Lett. A 310 (2003), 187–196.

    Article  MathSciNet  MATH  Google Scholar 

  105. L. Vahala, G. Vahala, and J. Yepez, Lattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence, Phys. Lett. A 306 (2003), 227–234.

    Article  MathSciNet  MATH  Google Scholar 

  106. L.M.K. Vandersypen, C.S. Yannoni, M.H. Sherwood, and I.L. Chuang, Realization of logically labeled effective pure states for bulk quantum computation, Phys. Rev. Lett. 83 (1999), 3085.

    Article  Google Scholar 

  107. L.M.K. Vandersypen, M. Steffen, G. Breyta, C. Yannoni, R. Cleve, and I.L. Chuang, Experimental realization of an order-finding algorithm with an NMR quantum computer, Phys. Rev. Lett. 85 (2000), 5452.

    Article  Google Scholar 

  108. L.M.K. Vandersypen, and M. Steffen, M.H. Sherwood, C. Yannoni, G. Breyta, and I.L. Chuang, Implementation of a three-quantum-bit search algorithm, Appl. Phys. Lett. 76 (2000), 5, 646–648.

    Article  Google Scholar 

  109. L.M.K. Vandersypen, I.L. Chuang, NMR techniques for quantum control and computation, Rev. Modern Phys. 76(2004), 4, 1037–1069.

    Article  Google Scholar 

  110. E. VanOort, N.B. Manson, M. Glasbeek, Optically detected spin coherence of the diamond N-V center in its triplet ground-state, J. Phys. C Solid State Phys. 21 (1988), 4385–4391.

    Article  Google Scholar 

  111. L.M.K. Vandersypen, M. Steffen, G. Breyta, et al., Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414 (2001), 883–887.

    Article  Google Scholar 

  112. V. Vedral, A. Barenco, and A. Ekert, Quantum network for elementary arithmetic operations, Phys. Rev. A 54 (1996), 147–153.

    Article  MathSciNet  Google Scholar 

  113. C. Wei, N.B. Manson, Observation of electromagnetically induced transparency within an electron spin resonance transition, J. Opt. B Quantum Semiclassical Opt. 1 (1999), 464–468.

    Article  Google Scholar 

  114. Y.S. Weinstein, M.A. Pravia, E.M. Fortunato, S. Lloyd, and D.G. Cory, Implementation of the quantum Fourier transform, Phys. Rev. Lett. 86 (2001), 1889–1891.

    Article  Google Scholar 

  115. Wikipedia, http://en.wikipedia.org/wiki/Nuclear magnetic resonance.

  116. F. Yamaguchi, and Y. Yamamoto, Crystal lattice quantum computer, Microelectron. Eng. 47 (1999), 273–275.

    Article  Google Scholar 

  117. C. Yannoni, M.H. Sherwood, D.C. Miller, I.L. Chuang, L.M.K. Vandersypen, and M.G. Kubines, Nuclear magnetic resonance quantum computing using liquid crystal solvents, Appl. Phys. Lett. 75 (1999), No. 22, 3563–3562.

    Article  Google Scholar 

  118. C.C. Yao, Quantum circuit complexity, Proc. of the 34th Ann. IEEE Symp. on Foundations of Computer Science (1993), 352–361.

    Google Scholar 

  119. J. Yepez, Quantum lattice-gas model for the diffusion equation, Int. J. Modern Phys. C 12 (2001), 9, 1285–1303.

    Article  MathSciNet  Google Scholar 

  120. J. Yepez, Type-II quantum computers, Int. J. Modern Phys. C 12 (2001), 9, 1273– 1284.

    Article  MathSciNet  Google Scholar 

  121. J. Yepez, and B. Boghosian, An efficient and accurate quantum lattice-gas model for the many-body Schr¨odinger wave equation, Comput. Phys. Commun. 146 (2002), Issue 3, 280–294.

    Article  MathSciNet  MATH  Google Scholar 

  122. J. Zhang, Z. Lu, L. Shan, and Z. Deng, Synthesizing NMR analogs of Einstein- Podolsky-Rosen state using the generalized Grover’s algorithm, Phys. Rev. A 66 (2002), 044308.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhang, Z., Chen, G., Diao, Z., Hemmer, P.R. (2009). NMR Quantum Computing. In: Gao, D., Sherali, H. (eds) Advances in Applied Mathematics and Global Optimization. Advances in Mechanics and Mathematics, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75714-8_14

Download citation

Publish with us

Policies and ethics