Taurine 7 pp 65-74 | Cite as

Beneficial Effect of Taurine Treatment Against Doxorubicin-Induced Cardiotoxicity in Mice

  • Takashi Ito
  • Satoko Muraoka
  • Kyoko Takahashi
  • Yasushi Fujio
  • Stephen W. Schaffer
  • Junichi Azuma
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 643)


Though the administration of taurine is clinically efficacious against heart failure, the mechanism underlying its cardioprotection remains to be established. To provide information on the mechanism, we examined the effects of taurine on doxorubicin (DOX)-induced cardiotoxicity, with an emphasis on ROS generation and cardiac gene inhibition. Oral administration of taurine (3% w/v in tap water) dramatically reduced the mortality rate in both the acute or sub-acute toxic models of DOX toxicity. It was shown that taurine prevented DOX-induced oxidative stress as determined from cardiac glutathione content. Interestingly, Northern blot analysis revealed that DOX altered cardiac gene expression, including that of α-myosin heavy chain, ventricular myosin light chain-2 isoform and brain natriuretic peptide, an effect partially ameliorated by taurine treatment. In conclusion, taurine suppresses ROS generation and regulates gene expression in the DOX treated heart.


Reactive Oxygen Species Generation Brain Natriuretic Peptide Myosin Heavy Chain Cardiac Gene Expression Taurine Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555PubMedCrossRefGoogle Scholar
  2. Arai M, Tomaru K, Takizawa T, Sekiguchi K, Yokoyama T, Suzuki T, Nagai R (1998) Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. J Mol Cell Cardiol 30:243–254PubMedCrossRefGoogle Scholar
  3. Aries A, Paradis P, Lefebvre C, Schwartz RJ, Nemer M (2004) Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proc Natl Acad Sci USA 101:6975–6980PubMedCrossRefGoogle Scholar
  4. Azuma J, Hasegawa H, Sawamura A, Awata N, Harada H, Ogura K, Kishimoto S (1982) Taurine for treatment of congestive heart failure. Int J Cardiol 2:303–304PubMedCrossRefGoogle Scholar
  5. Cunningham C, Tipton KF, Dixon HB (1998) Conversion of taurine into N-chlorotaurine (taurine chloramine) and sulphoacetaldehyde in response to oxidative stress. Biochem J 330(Pt 2): 939–945Google Scholar
  6. Edmondson DG, Lyons GE, Martin JF, Olson EN (1994) Mef2 gene ex-pression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120:1251–1263PubMedGoogle Scholar
  7. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMedGoogle Scholar
  8. Ito H, Miller SC, Billingham ME, Akimoto H, Torti SV, Wade R, Gahlmann R, Lyons G, Kedes L, Torti FM (1990) Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro. Proc Natl Acad Sci USA 87:4275–4279PubMedCrossRefGoogle Scholar
  9. Ito T, Fujio Y, Hirata M, Takatani T, Matsuda T, Muraoka S, Takahashi K, Azuma J (2004) Expression of taurine transporter is regulated through the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway and contributes to cytoprotection in HepG2 cells. Biochem J 382:177–182PubMedCrossRefGoogle Scholar
  10. Kang YJ, Chen Y, Epstein PN (1996) Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem 271:12610–12616PubMedCrossRefGoogle Scholar
  11. Kang YJ, Chen Y, Yu A, Voss-McCowan M, Epstein PN (1997) Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. J Clin Invest 100: 1501–1506PubMedCrossRefGoogle Scholar
  12. Kawamura T, Hasegawa K, Morimoto T, Iwai-Kanai E, Miyamoto S, Kawase Y, Ono K, Wada H, Akao M, Kita T (2004) Expression of p300 pro-tects cardiac myocytes from apoptosis in vivo. Biochem Biophys Res Commun 315:733–738PubMedCrossRefGoogle Scholar
  13. Kunisada K, Negoro S, Tone E, Funamoto M, Osugi T, Yamada S, Okabe M, Kishimoto T, Yamauchi-Takihara K (2000) Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic sig-nal but a protective signal against doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci USA 97:315–319PubMedCrossRefGoogle Scholar
  14. Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:419–431PubMedGoogle Scholar
  15. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229PubMedCrossRefGoogle Scholar
  16. Molkentin JD, Kalvakolanu DV, Markham BE (1994) Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol 14: 4947–4957PubMedGoogle Scholar
  17. Nakaoka Y, Nishida K, Fujio Y, Izumi M, Terai K, Oshima Y, Sugiyama S, Matsuda S, Koyasu S, Yamauchi-Takihara K, Hirano T, Kawase I, Hirota H (2003) Activation of gp130 transduces hypertrophic signal through interaction of scaffolding/docking protein Gab1 with tyrosine phosphatase SHP2 in cardiomyocytes. Circ Res 93:221–229PubMedCrossRefGoogle Scholar
  18. Oshima Y, Fujio Y, Funamoto M, Negoro S, Izumi M, Nakaoka Y, Hirota H, Yamauchi-Takihara K, Kawase I (2002) Aldosterone augments endothelin-1-induced cardiac myocyte hypertrophy with the reinforcement of the JNK pathway. FEBS Lett 524:123–126PubMedCrossRefGoogle Scholar
  19. Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH (2004) Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation 109:1877–1885PubMedCrossRefGoogle Scholar
  20. Poizat C, Sartorelli V, Chung G, Kloner RA, Kedes L (2000) Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription. Mol Cell Biol 20:8643–8654PubMedCrossRefGoogle Scholar
  21. Schaffer S, Solodushko V, Azuma J (2000a) Taurine-deficient cardiomyopathy: role of phospholipids, calcium and osmotic stress. Adv Exp Med Biol 483:57–69CrossRefGoogle Scholar
  22. Schaffer S, Takahashi K, Azuma J (2000b) Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546CrossRefGoogle Scholar
  23. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905PubMedCrossRefGoogle Scholar
  24. Siveski-Iliskovic N, Hill M, Chow DA, Singal PK (1995) Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation 91:10–15PubMedGoogle Scholar
  25. Takatani T, Takahashi K, Uozumi Y, Matsuda T, Ito T, Schaffer SW, Fujio Y, Azuma J (2004a) Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Bio-chem Biophys Res Commun 316:484–489CrossRefGoogle Scholar
  26. Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Ma-tsuda T, Schaffer SW, Fujio Y, Azuma J (2004b) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 287:C949–C953CrossRefGoogle Scholar
  27. Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999) The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126:1269–1280PubMedGoogle Scholar
  28. Taniyama Y, Walsh K (2002) Elevated myocardial Akt signaling amelio-rates doxorubicin-induced congestive heart failure and promotes heart growth. J Mol Cell Cardiol 34:1241–1247PubMedCrossRefGoogle Scholar
  29. Thuerauf DJ, Hanford DS, Glembotski CC (1994) Regulation of rat brain natriuretic peptide transcription. A potential role for GATA-related transcription factors in myocardial cell gene expression. J Biol Chem 269:17772–17775PubMedGoogle Scholar
  30. Toko H, Zhu W, Takimoto E, Shiojima I, Hiroi Y, Zou Y, Oka T, Aka-zawa H, Mizukami M, Sakamoto M, Terasaki F, Kitaura Y, Takano H, Nagai T, Nagai R, Komuro I (2002) Csx/Nkx2-5 is required for homeosta-sis and survival of cardiac myocytes in the adult heart. J Biol Chem 277:24735–24743PubMedCrossRefGoogle Scholar
  31. Torti SV, Akimoto H, Lin K, Billingham ME, Torti FM (1998) Selective inhibition of muscle gene expression by oxidative stress in cardiac cells. J Mol Cell Cardiol 30:1173–1180PubMedCrossRefGoogle Scholar
  32. Villani F, Galimberti M, Monti E, Piccinini F, Lanza E, Rozza A, Favalli L, Poggi P, Zunino F (1990) Effect of glutathione and N-acetylcysteine on in vitro and in vivo cardiac toxicity of doxorubicin. Free Radic Res Com-mun 11:145–151CrossRefGoogle Scholar
  33. Wang GW, Klein JB, Kang YJ (2001) Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther 298:461–468PubMedGoogle Scholar
  34. Yen HC, Oberley TD, Vichitbandha S, Ho YS, St Clair DK (1996) The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest 98:1253–1260PubMedCrossRefGoogle Scholar
  35. Zhang X, Azhar G, Chai J, Sheridan P, Nagano K, Brown T, Yang J, Khrapko K, Borras AM, Lawitts J, Misra RP, Wei JY (2001) Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am J Physiol Heart Circ Physiol 280:H1782–H1792PubMedGoogle Scholar
  36. Zhou S, Palmeira CM, Wallace KB (2001) Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 121:151–157PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Takashi Ito
    • 1
    • 2
  • Satoko Muraoka
  • Kyoko Takahashi
  • Yasushi Fujio
  • Stephen W. Schaffer
  • Junichi Azuma
  1. 1.Department of Clinical Pharmacology and Pharmacogenomics Graduate School of Pharmaceutical SciencesOsaka UniversityJapan
  2. 2.Department of PharmacologyUniversity of South AlabamaUSA

Personalised recommendations