Taurine 7 pp 47-55 | Cite as

Modulation by Taurine of Human Arterial Stiffness and Wave Reflection

  • Hiroyasu Satoh
  • Jangmi Kang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 643)


Effects of taurine (1000–2000 mg) on hemodynamic function and the arterial pulse wave were investigated for 102 healthy medical and paramedical students. The vascular parameters were generally dependent on aging, with the arterial stiffness parameters, such as baPWV, ABI and AI, are considered the indicators of “vascular aging”. Acute administration of taurine decreased BP and HR and attenuated the stiffness parameters derived from the pulse waveform. Thus, taurine can cause significant changes in the cardiovascular system and the arterial pulse wave. However, approximately 5% of the students were non-responders. This may be related to the notion that taurine would be expected to exert greater effects on the vascular functions of unhealthy individuals. Based our previous experiments, therefore, taurine plays a role in the regulation of the cardiac and vascular function.


Arterial Stiffness Pulse Wave Velocity Stiffness Parameter Augmentation Index Pulse Waveform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asmer R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, Target R, Levy B (1995) Assessment of arterial distensibility by automatic pulse wave velocity measurement:validation and clinical application studies. Hypertension 26:485–490Google Scholar
  2. Chen CH, Nevo E, Fetics B, Pak PH, Yin FCR, Maughan WL, Kass DA (1997) Estimation of central aortic pressure waveform by mathematical transformation of radial tomometry pressure Validation of generalized transfer function. Circulation 95:1827–1836PubMedGoogle Scholar
  3. Crass MF, Lombardini JB (1978) Release of tissue taurine from the oxygen-deficient perfused rat heart. Proc Soc Exp Biol Med 157:486–488PubMedGoogle Scholar
  4. Davies JI, Struthers AD (2003) Pulse wave analysis and pulse wave velocity:a critical review of their strengths and weakness. J Hyertens 21:463–472CrossRefGoogle Scholar
  5. Franconi F, Martini, Stendari I, Matucci R, Zilleti L, Giotti A (1982) Effect of taurine on calcium level and contractility in guinea pig ventricular strips. Biochem Pharmacol 31:3181–3185PubMedCrossRefGoogle Scholar
  6. Gallagher D, Adji A, O’Rourke MF (2004) Validation of the transfer function technique for generating central from peripheral upper limb pressure waveform. Am J Hypertens 17:1059–1067PubMedCrossRefGoogle Scholar
  7. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMedGoogle Scholar
  8. Karamanoglu M, Gallagher DE, Avolio AP, O’Rourke MF (1994) Functional origin of reflected pressure waves in a multibranched model of the human arterial system. Am J Physiol 267:H1681–H1688PubMedGoogle Scholar
  9. Kelly R, Hayward C, Avolio A, O’Rourke M (1989) Noninvasive determinstion of age-related changes in the human arterial pulse. Circulation 80:1652–1659PubMedGoogle Scholar
  10. Marchais SJ, Guerin AP, Pannier BM, Levy BI, Safar ME, London GM (1993) Wave reflections and cardiac hypertrophy in chronic uremia Influence of body size. Hypertension 22:876–883PubMedGoogle Scholar
  11. Munakata M, Nagasaki A, Nunokawa T, Sakuma T, Kato H, Yoshinaga K, Toyota T (2004) Effects of varsartan and nifedipine coatcore on systemic arterial stiffness in hypertensive patients. AJH 17:1050–1055PubMedGoogle Scholar
  12. Nichols WW, O’Rourke MF (1998) McDonald’s blood flow in arteries: theoretical experimental and clinical principles. Edward Arnold, LondonGoogle Scholar
  13. Pannier BM, Avolio AP, Hoeks A, Mancia G, Takazawa K (2002) Methods and devices for measuring arterial compliance in human. Am J Hypertens 15:743–753PubMedCrossRefGoogle Scholar
  14. Rall JA (1990) Sixty years of investigation into the foundamental nature of muscle contraction. Prog Clin Biol Res 327:1–15PubMedGoogle Scholar
  15. Satoh H (1994a) Antagonistic actions of taurine on Ca2+ -induced responses in cardiac muscle cells. Jpn Heart J 35:457–458Google Scholar
  16. Satoh H (1994b) Cardioprotective actions of taurine against intracellular and extracellular Ca2+-induced effects. In: Huxtable RJ, Michalk D (eds) Taurine in health and disease. Plenum Press, New York, pp 181–196Google Scholar
  17. Satoh H (1994c) Taurine-induced hyperpolarizing shift of the reversal potential for the fast Na+ current in embryonic chick cardiomyocytes. Gen Pharmacol 26:517–521Google Scholar
  18. Satoh H (1994d) Regulation of the action potential configuration by taurine in guinea-pig ventricular muscle. Gen Pharmacol 25:47–52Google Scholar
  19. Satoh H (1995a) Regulation by taurine of the spontaneous activity in young embryonic chick cardiomyocytes. J Cardiovasc Pharmacol 25:3–8CrossRefGoogle Scholar
  20. Satoh H (1995b) A dual actions of taurine on the delayed rectifier K+ current in young embryonic chick cardiomyocytes. Amino Acids 9:235–246CrossRefGoogle Scholar
  21. Satoh H (1995c) Electropysiological actions of taurine on spontaneously beating rabbit sino-atrial nodal cells. Jpn J Pharmacol 67:29–34CrossRefGoogle Scholar
  22. Satoh H (1996) Direct inhibition by taurine of the ATP-sensitive K+ channel in guinea pig ventricular cardiomyocytes. Gen Pharmacol 27:625–627PubMedGoogle Scholar
  23. Satoh H (1998a) Modulation by taurine of the spontaneous action potentials in right atrial muscles of rat. Gen Pharmacol 30:209–212Google Scholar
  24. Satoh H (1998b) Inhibition by taurine of the inwardly rectifying K+ current in guinea pig ventricular cardiomyocytes. Eur J Pharmacol 346:309–313CrossRefGoogle Scholar
  25. Satoh (1998c) Inhibition of the fast Na+ current by taurine in guinea pig ventricular myocytes. Gen Pharmacol 31:155–158Google Scholar
  26. Satoh (1999) Taurine modulates IKr but not IKs in guinea pig ventricular cardiomyocytes. Br J Pharmacol 126:87–92Google Scholar
  27. Satoh H (2001) [Ca2+]i-dependent actions of taurine in spontaneously beating rabbit sino-atrial nodal cells. Eur J Pharmacol 424:19–25PubMedCrossRefGoogle Scholar
  28. Satoh H (2003) Electropharmacology of taurine on the hyperpolarization-activated inward current and the sustained inward current in spontaneous beating rat sino-atrial nodal cells. J Pharmacol Sci 91:229–238PubMedCrossRefGoogle Scholar
  29. Satoh H, Horie M (1997) Actions of taurine on the L-type Ca2+ channel current in guinea pig ventricular cardiomyocytes. J Cardiovasc Pharmacol 30:711–716PubMedCrossRefGoogle Scholar
  30. Satoh H, Sperelakis N (1992) Taurine inhibition of Na+current in embryonic chick ventricular myocytes. Eur J Pharmacol 218:83–89PubMedCrossRefGoogle Scholar
  31. Satoh H, Sperelakis N (1993) Taurine effects on Ca2+currents in young embryonic chick cardiomyocytes. Eur J Pharmacol 231:443–449PubMedCrossRefGoogle Scholar
  32. Satoh and Sperelakis N (1998) Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen Pharmacol 30:451–463CrossRefGoogle Scholar
  33. Satoh H, Nakatani A, Tanaka T, Haga T (2002) Cardiac functions and taurine’s actions at different extracellular calcium concentrations in forced swimming stress-loaded rats. Biol Trac Ele Res 87:171–182CrossRefGoogle Scholar
  34. Schaffer SW, Kramer J, Chovan JP (1980) Regulation of calcium homeostasis in the heart by taurine. Fed Proc 39:2691–2694PubMedGoogle Scholar
  35. Song D, O’Regan MH, Phillis JW (1998) Mechanisms of amino acid release from the isolated anoxic/reperfused rat heart. Eur J Pharmacol 351:313–322PubMedCrossRefGoogle Scholar
  36. Sperelakis N, Satoh H (1993) Taurine effects on ion channels of cardiac muscle. In: Noble D, Earn Y (eds) Ionic channels and effect of taurine on the heart. Kluwer Academic Publishers, Boston, pp 93–118Google Scholar
  37. Sperelakis N, Satoh H, Bkaily G (1992) Taurine’s effects on ionic current myocardial cells. In: Schaffer SW, Lombardim B (eds) Taurine: new dimensions on its mechanisms and actions, pp 129–143Google Scholar
  38. Suleiman MS, Dihmis WC, Caputo M, Angelini GD, Bryan AJ (1997) Changes in myocardial concentration of glutamine and aspartate during coronary artery surgery. Am J Physiol 272:H1063–H1069Google Scholar
  39. Wang JJ, Parker KH (2004) Wave propagation in a model of the arterial circulation. J Biomech 37:457–470PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hiroyasu Satoh
    • 1
  • Jangmi Kang
  1. 1.Department of PharmacologyNara Medical University Nara and Hyogo NCC CollegeHyogoJapan

Personalised recommendations