Skip to main content
Book cover

Taurine 7 pp 369–379Cite as

The Effects of Taurine, Hypotaurine, and Taurine Homologs on Erythrocyte Morphology, Membrane Fluidity and Cytoskeletal Spectrin Alterations Due to Diabetes, Alcoholism and Diabetes-Alcoholism in the Rat

  • Conference paper

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 643)

Abstract

Taurine (TAU) and compounds representing a TAU analog (hypotaurine $=$ HYTAU) or homolog (aminomethanesulfonic acid $=$ AMSA, homotaurine $=$ HMTAU) were tested for their counteracting effects against alterations in erythrocyte (RBC) morphology, membrane fluidity and cytoskeletal spectrin distribution due to diabetes, alcoholism and diabetes-alcoholism in male Goto-Kakizaki rats (made diabetic with a high fat diet and alcoholic upon feeding on a flavored alcohol solution) and Wistar-Kyoto rats (serving as controls). Both diabetes and alcoholism changed the RBC discoidal biconcave shape to a spiculated one, lowered membrane fluidity, and caused spectrin to become marginalized. While AMSA and HYTAU returned the RBC shape to normal, HMTAU made it only discoidal, and TAU was without effect. All test compounds, but TAU, maintained the membrane fluidity normal; and HYTAU and AMSA, but not TAU or HMTAU, kept spectrin uniformly distributed. The noted effects were correlated with compound structure and RBC values for malondialdehyde and cholesterol/phospholipid ratio.

Keywords

  • Sulfur Compound
  • Membrane Fluidity
  • Chronic Alcoholism
  • Normal RBCs
  • Isotonic Phosphate Buffer Saline

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-75681-3_38
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-75681-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aruoma OI, Halliwell B, Hoey BM, Butlerv J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256:251–255

    Google Scholar 

  • Balkan J, Oztezcan S, Aykaç-Toker G, Uysal M (2002) Effects of added dietary taurine on erythrocyte lipids and oxidative stress in rabbits fed a high cholesterol diet. Biosci Biotechnol Biochem 66:2701–2705

    PubMed  CrossRef  CAS  Google Scholar 

  • Ballard HS (1997) The hematological complications of alcoholism. Alcohol Health Res World 21:42–52

    PubMed  CAS  Google Scholar 

  • Banerjee R, Nageshwari K, Puniyani RR (1998) The diagnostic relevance of red cell rigidity. Clin Hemorheol Microcirc 19:21–24

    PubMed  CAS  Google Scholar 

  • Benedetti A, Birarelli AM, Brunelli E, Curatola G, Ferretti G, Del Prete U, Jezequel AM, Orlandi F (1987) Modification of lipid composition of erythrocyte membranes in chronic alcoholism. Pharmacol Res Commun 19:651–662

    PubMed  CrossRef  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    PubMed  CrossRef  CAS  Google Scholar 

  • Chiu D, Kuypers F, Lubin B (1989) Lipid peroxidation in human red cells. Semin Hematol 26:257–276

    PubMed  CAS  Google Scholar 

  • Cooper RA (1978) Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells. J Supramol Struct 8:413–430

    PubMed  CrossRef  CAS  Google Scholar 

  • Daniels CK, Goldstein D (1982) Movement of free cholesterol from lipoproteins or lipid vesicles into erythrocytes Acceleration by ethanol in vitro. Mol Pharmacol 21:694–700

    PubMed  CAS  Google Scholar 

  • Dave GS, Kalia K (2007) Hyperglycemia induced oxidative stress in type-1 and type-2 diabetic patients with and without nephropathy. Cell Mol Biol 53:68–78

    PubMed  CAS  Google Scholar 

  • Eichenberger K, Böhni P, Winterhalter KH, Kawato S, Richter C (1982) Microsomal lipid peroxidation causes an increase in the order of the membrane lipid domain. FEBS Lett 142:59–62

    PubMed  CrossRef  CAS  Google Scholar 

  • Harris RA, Schroeder F (1981) Ethanol and the physical properties of brain membranes. Fluorescence studies. Mol Pharmacol 20:128–137

    PubMed  CAS  Google Scholar 

  • Huxtable RJ, Sebring LA (1986) Towards a unifying theory for the actions of taurine. Trends Pharmacol Sci 7:481–485

    CrossRef  CAS  Google Scholar 

  • Jain SK, McVie R, Duett J, Herbst JJ (1989) Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 38:1539–1543

    PubMed  CrossRef  CAS  Google Scholar 

  • Knowles DW, Tilley L, Mohandas N, Chasis JA (1997) Erythrocyte membrane vacuolation: model for the molecular mechanism of protein sorting. Proc Natl Acad Sci USA 94:12969–12974

    PubMed  CrossRef  CAS  Google Scholar 

  • Lindi C, Montorfano G, Marciani P (1998) Rat erythrocyte susceptibility to lipid peroxidation after chronic ethanol intake. Alcohol 16:311–316

    PubMed  CrossRef  CAS  Google Scholar 

  • Malorni W, Straface E, Pagano G, Monti D, Zatterale A, Del Principe D, Deeva IB, Franceschi C, Masella R, Korkina LG (2000) Cytoskeleton alterations of erythrocytes from patients with Fanconi’s anemia. FEBS Lett 468:125–128

    PubMed  CrossRef  CAS  Google Scholar 

  • McLawhon RW, Marikovsky Y, Thomas NJ, Weinstein RS (1987) Ethanol-induced alterations in human erythrocyte shape and surface properties: modulatory role of prostglandin E1. J Membrane Biol 99:73–78

    CrossRef  CAS  Google Scholar 

  • Nakashima T, Shima T, Sakai M, Yama H, Mitsuyoshi H, Inaba K, Matsumoto N, Sakamoto Y, Kashima K, Nishikawa H (1996) Evidence of a direct action of taurine and calcium on biological membranes. Biochem Pharmacol 52:173–176

    PubMed  CrossRef  CAS  Google Scholar 

  • Palek J, Lux SE (1983) Red cell membrane skeletal defects in hereditary and acquired hemolytic anemias. Semin Hematol 20:189–224

    PubMed  CAS  Google Scholar 

  • Parthiban A, Vijayalingam S, Shanmugasundaram KR, Mohan R (1995) Oxidative stress and the development of diabetic complications – antioxidants and lipid peroxidation in erythrocytes and cell membrane. Cell Biol Int 19:987–993

    PubMed  CrossRef  CAS  Google Scholar 

  • Sebring LA, Huxtable RJ (1986) Low affinity binding of taurine to phospholiposomes and cardiac sarcolemmal. Biochim Biophys Acta 884:559–566

    PubMed  CAS  Google Scholar 

  • Sergent O, Pereira M, Belhomme C, Chevanne M, Huc L, Lagadic-Gossmann D (2005) Role for membrane fluidity in ethanol-induced oxidative stress of primary rat hepatocytes. J Pharmacol Exp Ther 313:104–111

    PubMed  CrossRef  CAS  Google Scholar 

  • Straface E, Rivabene R, Masella R, Santulli M, Paganelli R, Malorni W (2002) Structural changes of the erythrocyte as a marker of non-insulin dependent diabetes:protective effects of N-acetylcysteine. Chem Biophys Res Commun 290:1393–1398

    CrossRef  CAS  Google Scholar 

  • Tadolini B, Pintus, G, Pinna GG, Bennardini F, Franconi F (1995) Effects of taurine and hypotaurine on lipid peroxidation. Biochem Biophys Res Commun 213:820–826

    PubMed  CrossRef  CAS  Google Scholar 

  • Taraschi, TF, Ellingson JS, Wu A, Zimmerman R, Rubin E (1986) Membrane tolerance to ethanol is rapidly lost after withdrawal: a model for studies of membrane adaptation. Proc Natl Acad Sci USA 83:3669–3673

    PubMed  CrossRef  CAS  Google Scholar 

  • Tokunaga H, Yoneida Y, Kuriyama K (1979) Protective actions of taurine against streptozotocin-induced hyperglycemia. Biochem Pharmacol 15:2807–2811

    Google Scholar 

  • Watala C, Winocour PD (1992) The relationship of chemical modification of membrane proteins and plasma lipoproteins to reduced membrane fluidity of erythrocytes from diabetic patients. Eur J Clin Chem Clin Biochem 30:513–519

    PubMed  CAS  Google Scholar 

  • Watanabe H, Kobayashi A, Yamamoto T, Suzuki S, Hayashi H, Yamazaki N (1990) Alterations of human erythrocyte membrane fluidity by oxygen-derived free radicals and calcium. Free Radic Biol Med 8:507–514

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Gossai, D., Lau-Cam, C.A. (2009). The Effects of Taurine, Hypotaurine, and Taurine Homologs on Erythrocyte Morphology, Membrane Fluidity and Cytoskeletal Spectrin Alterations Due to Diabetes, Alcoholism and Diabetes-Alcoholism in the Rat. In: Azuma, J., Schaffer, S.W., Ito, T. (eds) Taurine 7. Advances in Experimental Medicine and Biology, vol 643. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75681-3_38

Download citation