Skip to main content

Taurine Supplementation and Pancreatic Remodeling

  • Conference paper
Taurine 7

abstract

Taurine is a semi-essential sulphur containing amino acid derived from methionine and cysteine metabolism. Taurine has several biological processes such as hypoglycemic action, antioxidation, and detoxification. In this study we evaluated the role of taurine in pancreatic islets development, since the endocrine pancreas undergoes significant modifications during neonatal life. Histological examination of the pancreas from taurine-fed mice revealed no histological abnormalities in the endocrine or exocrine parts of the pancreas. However, supplementation of taurine in the drinking water resulted in a drastic and significant increase in the number of islets per section. Furthermore, islets size was significantly larger. We hypothesize that supplementation of taurine, which is important for the development of the endocrine pancreas may reduce cytokine-induced apoptosis in pancreatic beta cells. The endocrine pancreas undergoes ignificant modifications during neonatal life and apoptosis is an important mechanism in this remodeling. We suggest that alteration of this remodeling process during this period of time, when a fine balance between cell replication and cell death is critical, would affect the development of the pancreatic islets of Langerhans, and could have important effects on the pancreatic cell mass and the endocrine function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arany E, Strutt B, Romanus P, Remacle C, Reusens B, Hill DJ (2004) Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia 47:1831–1837

    Article  PubMed  CAS  Google Scholar 

  • Boujendar S, Reusens B, Merezak S, Ahn MT, Arany E, Hill D, Remacle C (2002) Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia 45:856–866

    Article  PubMed  CAS  Google Scholar 

  • Cherif H, Reusens B, Dahri S, Remacle C, Hoet JJ (1996) Stimulatory effects of taurine on insulin secretion by fetal rat islets cultured in vitro. J Endocrinol 151:501–506

    Article  PubMed  CAS  Google Scholar 

  • Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ (1991) Islet function in offspring of mothers on low protein diet during gestation. Diabetes 40:115–120

    PubMed  CAS  Google Scholar 

  • El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    PubMed  CAS  Google Scholar 

  • El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 1:189–197

    Article  Google Scholar 

  • Foos T, Wu JY (2002) The role of Taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27:21–26

    Article  PubMed  CAS  Google Scholar 

  • Franconi F, Loizzo A, Ghirlanda G, Seghieri G (2006) Taurine supplementation and diabetes mellitus. Curr Opin Clin Nutr Metab Care 9:32–36

    Article  PubMed  CAS  Google Scholar 

  • Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications, Diabet Metab Res Rev 17:330–346

    Article  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Lambardini JB (1985) Effects of taurine on calcium ion uptake and protein phosphorylation in rat retinal membrane preparations. J Neurochem 45:268–275

    Article  Google Scholar 

  • Liu Y, Tonna-DeMasi M, Park E, Schuller-Levis G, Quinn MR (1998) Taurine chloramine inhibits production of nitric oxide and prostaglandin E2 in activated C6 glioma cells by suppressing inducible nitric oxide synthase and cyclooxygenase-2 expression. Brain Res Mol Brain Res 59:189–195

    Article  PubMed  CAS  Google Scholar 

  • Lourenco R, Camilo ME (2002) Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp 17:262–270

    PubMed  CAS  Google Scholar 

  • Merezak S, Hardikar AA, Yajnik CS, Remacle C, Reusens B (2001) Intrauterine low protein diet increases fetal beta-cell sensitivity to NO and IL-1 beta: the protective role of taurine. J Endocrinol 171:299–308

    Article  PubMed  CAS  Google Scholar 

  • Militante JD, Lombardini JB (1998) Pharmacological characterization of the effects of taurine on calcium uptake in the rat retina. Amino Acids 15:99–108

    Article  PubMed  CAS  Google Scholar 

  • Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M (2000) Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71:54–58

    PubMed  CAS  Google Scholar 

  • Petrik J, Arany E, McDonald TJ, Hill DJ (1998) Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology 139:2994–3004

    Article  PubMed  CAS  Google Scholar 

  • Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S (1997) Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 138:1736–1741

    Article  PubMed  CAS  Google Scholar 

  • Saransaari P, Oja SS (2000) Taurine and neuronal cell damage. Amino Acids 19:509–526

    Article  PubMed  CAS  Google Scholar 

  • Schaffer S, Takahashi K, Azuma J (2000) Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546

    Article  PubMed  CAS  Google Scholar 

  • Solis JM, Herranz AS, Erreras O, Lerma J, Martin del Rio R (1988) Does taurine act as an osmoregulatory substance in the rat brain. Neurosci Lett 91:53–58

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Idrissi, A.E., Boukarrou, L., L’Amoreaux, W. (2009). Taurine Supplementation and Pancreatic Remodeling. In: Azuma, J., Schaffer, S.W., Ito, T. (eds) Taurine 7. Advances in Experimental Medicine and Biology, vol 643. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75681-3_36

Download citation

Publish with us

Policies and ethics