Skip to main content

Functional Implication of Taurine in Aging

  • Conference paper
Taurine 7

Abstract

Age-related impairment of central functions is though to result from alterations of neurochemical indices of synaptic function. These neurochemical modifications involve structural proteins, neurotransmitters, neuropeptides and related receptors. Several studies demonstrated that GABA receptors, glutamic acid decarboxylase (GAD65&67), and different subpopulations of GABAergic neurons are markedly decreased in experimental animal brains during aging. Thus, the age-related decline in cognitive functions could be attributable, at least in part, to decrements in the function of the GABAergic inhibitory neurotransmitter system. In this study we show that chronic supplementation of taurine to aged mice significantly ameliorated the age-dependent decline in memory acquisition and retention, and caused alterations in the GABAergic system. These changes include increased levels of the neurotransmitters GABA and glutamate, increased expression of glutamic acid decarboxylase and the neuropeptide somatostatin and increased in the number of somatostatin-positive neurons. These specific alterations of the inhibitory system caused by taurine treatment oppose those naturally-occurring during aging, and suggest a protective role of taurine in this process.

Increased understanding of age-related neurochemical changes in the GABAergic system will be important in elucidating the underpinnings of the functional changes of aging. Taurine might help forestall the age-related decline in cognitive functions through interaction with the GABAergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki T, Kato H, Fujiwara T, Itoyama Y (1996) Regional age-related alterations in cholinergic and GABAergic receptors in the rat brain. Mech Ageing Dev 88:49–60

    Article  PubMed  CAS  Google Scholar 

  • Aruoma O I, Halliwell B, Hoey BM, Butler J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256:251–255

    PubMed  CAS  Google Scholar 

  • Banay-Schwartz M, Lajtha A, Palkovits M (1989) Changes with aging in the levels of amino acids in rat CNS structural elements II Taurine and small neutral amino acids. Neurochem Res 14:563–570

    Article  PubMed  CAS  Google Scholar 

  • Banay-Schwartz M, Lajtha A, Palkovits M (1989) Changes with aging in the levels of amino acids in rat CNS structural elements I Glutamate and related amino acids. Neurochem Res 14:555–562

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM, Raza A, Lawhorn Armour BA, Pippin J, Arnerić SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci 10(7):2363-72.

    Google Scholar 

  • Caspary DM, Milbrandt JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30:349–360

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM, Palombi PS, Hughes LF (2002) GABAergic inputs shape responses to amplitude modulated stimuli in the inferior colliculus. Hear Res 168:163–173

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease and Alzheimer senile dementia Nature 288:279–280

    CAS  Google Scholar 

  • del Olmo N, Bustamante J, del Rio RM, Soli J (2000) Taurine activates GABA(A) but not GABA(B) receptors in rat hippocampal CA1 area. Brain Res 864:298–307

    Article  PubMed  CAS  Google Scholar 

  • Dournaud P, Jazat-Poindessous F, Slama A, Lamour Y, Epelbaum J (1996) Correlations between water maze performance and cortical somatostatin mRNA and high-affinity binding sites during ageing in rats Eur J Neurosci 8:476–485

    CAS  Google Scholar 

  • El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of Epileptic Seizures through taurine. In: Lombardini JB, Schaffer SW, Azuma J (eds) Taurine 5 Beginning the 21st Century, Adv Exp Med Biol, Vol 526, Kluwer Press, NewYork, pp 515–525

    Google Scholar 

  • El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    PubMed  CAS  Google Scholar 

  • Govoni S, Memo M, Saiani L, Spano PF, Trabucchi M (1980) Impairment of brain neurotransmitter receptors in aged rats. Mech Ageing Dev 12:39–46

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez A, Khan ZU, Morris SJ, De Blas AL (1994) Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus. J Neurosci 14: 7469–7477

    PubMed  Google Scholar 

  • Häusser MA, Yung WH, Lacey MG (1992) Taurine and glycine activate the same Cl- conductance in substantia nigra dopamine neurons. Brain Res 571:103–108

    Article  PubMed  Google Scholar 

  • Hunter C, Chung E, Van Woert MH (1989) Age-dependent changes in brain glycine concentration and strychnine-induced seizures in the rat. Brain Res 482:247–251

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1989) Taurine in the central nervous system and the mammalian action actions of taurine. Prog Neurobiol 32:471–533

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992) The physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Kuriyama K, and Hashimoto T (1998) Interrelationship between taurine and GABA. Adv Exp Med Biol 442:329–337

    Google Scholar 

  • Kuwahara S, Kesuma Sari D, Tsukamoto Y, Tanaka S, Sasaki F (2004) Age-related changes in growth hormone (GH)-releasing hormone and somatostatin neurons in the hypothalamus and in GH cells in the anterior pituitary of female mice. Brain Res 1025:113–122

    Article  PubMed  CAS  Google Scholar 

  • Levinskaya N, Trenkner E, El Idrissi A (2006) Increased GAD-positive neurons in the cortex of taurine-fed mice. Adv Exp Med Biol 583:411–417

    Article  PubMed  CAS  Google Scholar 

  • Marczynski TJ (1998) GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease revisited. Brain Res Bull 45:341–379

    Article  PubMed  CAS  Google Scholar 

  • Mellor JR, Gunthorpe MJ, and Randall AD (2000) The taurine uptake inhibitor guanidinoethyl sulphonate is an agonist at gamma-aminobutyric acid(A) receptors in cultured murine cerebellar granule cells. Neurosci Lett 286:25–28

    Article  PubMed  CAS  Google Scholar 

  • Milbrandt JC, Albin RL, Turgeon SM, Caspary DM (1996) GABAA receptor binding in the aging rat inferior colliculus. Neuroscience 73:449–458

    Article  PubMed  CAS  Google Scholar 

  • Quinn MR, and Harris CL (1995) Tautine allosterically inhibits binding of [35S]-t-butylbicyclophosphorothionate (TBPS) to rat brain synaptic membranes. Neuropharmacol 34:1607–1613

    Article  Google Scholar 

  • Raza A, Milbrandt JC, Arneric SP, Caspary DM (1994) Age-related changes in brainstem auditory neurotransmitters: measures of GABA and acetylcholine function. Hear Res 77:221–230

    Article  PubMed  CAS  Google Scholar 

  • Rossor MN, Emson PC, Mountjoy CQ, Roth M, Iversen LL (1980) Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type. Nenrosci Lett 20:373–377

    Article  CAS  Google Scholar 

  • Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, Suemoto T, Higuchi M, Saido TC (2005) Somatostatin regulates brain amyloid beta peptide, beta42 through modulation of proteolytic degradation. Nat Med 11:434–439

    Article  PubMed  CAS  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    PubMed  CAS  Google Scholar 

  • Wang DS, Xu TL, Pang ZP, Li JS, Akaike N (1998) Taurine-activated chloride currents in the rat sacral dorsal commissural neurons. Brain Res 792:41–47

    Article  PubMed  CAS  Google Scholar 

  • Wu JY, Tang XW, Schloss JV, Faiman MD (1998) Regulation of taurine biosynthesis and its physiological significance in the brain. Adv Exp Med Biol 442:339–345

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Idrissi, A.E., Boukarrou, L., Splavnyk, K., Zavyalova, E., Meehan, E.F., L’Amoreaux, W. (2009). Functional Implication of Taurine in Aging. In: Azuma, J., Schaffer, S.W., Ito, T. (eds) Taurine 7. Advances in Experimental Medicine and Biology, vol 643. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75681-3_20

Download citation

Publish with us

Policies and ethics