Advertisement

Taurine 7 pp 159-167 | Cite as

Taurine Protects Immature Cerebellar Granullar Neurons against Acute Alcohol Administration

  • Andrey G. Taranukhin
  • Elena Y. Taranukhina
  • Irina M. Djatchkova
  • Pirjo Saransaari
  • Markku Pelto-Huikko
  • Simo S. Oja
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 643)

Abstract

Acute ethanol administration causes extensive apoptosis throughout the nervous system. We studied the protective effect of taurine on alcohol-induced apoptosis in the cerebellum of developing mice. Taurine rescued a part of immature neurons by markedly reducing caspase-3 immunoreactivity and the number of TUNEL-positive cells in most cerebellar lobules.

Keywords

Fetal Alcohol Spectrum Disorder Fetal Alcohol Syndrome Ethanol Administration Cerebellar Lobule Taurine Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aragón CM, Trudeau LE, Amit Z (1992) Effect ofTtaurine on Ethanol-Induced changes in open-field locomotor activity. Psychopharmacology 107:337–340PubMedCrossRefGoogle Scholar
  2. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731PubMedCrossRefGoogle Scholar
  3. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290PubMedCrossRefGoogle Scholar
  4. Clarren SK, Alvord AC, Sumi SM, Streissguth AP, Smith DW (1978) Brain malformations related to prenatal exposure to ethanol. J Pediat 92:64–67PubMedCrossRefGoogle Scholar
  5. Dachhour A, De Witte P (2000) Ethanol and amino acids in the central nervous system, Assessment of the pharmacological actions of acamprosate. Prog Neurobiol 60:343–362CrossRefGoogle Scholar
  6. Dikranian K, Ishimaru MJ, Tenkova T, Labruyere J, Qin YQ, Ikonomidou C, Olney JW (2001) Apoptosis in the in vivo mammalian forebrain. Neurobiol Dis 8:359–379PubMedCrossRefGoogle Scholar
  7. Dobbin J, Sands J (1979) The brain growth spurt in various mammalian species Early Human Dev 3:79–84CrossRefGoogle Scholar
  8. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure activation substrates and functions during apoptosis. Annu Rev Biochem 68:383–424PubMedCrossRefGoogle Scholar
  9. Famy C, Streissguth AP, Unis AS (1998) Mental illness in adults with fetal alcohol syndrome or fetal alcohol effects. Am J Psychiat 155:552–554PubMedGoogle Scholar
  10. Ferko AP, Babyock E (1988) Effect of taurine on ethanol-induced sleep in mice genetically bred for differences in ethanol sensitivity. Pharmacol Biochem Behav 31:667–673PubMedCrossRefGoogle Scholar
  11. Ferko AP (1987) Ethanol-induced sleep time: interaction with taurine and a taurine antagonist. Pharmacol Biochem Behav 27:235–238PubMedCrossRefGoogle Scholar
  12. Ikonomidou C, Bittigau P, Ishimaru MJ, Wozniak DF, Koch C, Genz K, Price MT Stefovska V, Hörster F, Tenkova T, Dikranian K, Olney JW (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287:1056–1060PubMedCrossRefGoogle Scholar
  13. Kumral A, Tugyan K, Gonenc S, Genc K, Genc S, Sonmez U, Yilmaz O, Duman N, Uysal N, Ozkan H (2005) Protective effects of erythropoietin against ethanol-induced apoptotic neurodegeneration and oxidative stress in the developing C57BL/6 mouse brain. Brain Res Dev Brain Res 160:146–156PubMedCrossRefGoogle Scholar
  14. Migheli A, Atanasio A, Schiffer D (1995) Ultrastructural detection of DNA strand breaks in apoptotic neural cells by in situ endlabelling techniques. J Pathol 176:27–35PubMedCrossRefGoogle Scholar
  15. Nowoslawski L, Klocke BJ, Roth KA (2005) Molecular regulation of acute ethanol-induced neuron apoptosis. J Neuropathol Exp Neurol 64:490–497PubMedGoogle Scholar
  16. Oja SS, Saransaari P (2007) Taurine. In: SS Oja A Schousboe, P Saransaari (eds) Handbook of Neurochemistry and Molecular Neurobiology vol. 6 Amino Acids and Peptides in the Nervous System Springer, New York, pp 156–206Google Scholar
  17. Olive MF, Nannini MA, Ou CJ, Koenig HN, Hodge CW (2002) Effects of acute acamprosate and homotaurine on ethanol intake and ethanol-stimulated mesolimbic dopamine release. Eur J Pharmacol 437:55–61PubMedCrossRefGoogle Scholar
  18. Olney JW, Tenkova T, Dikranian K, Muglia LJ, Jermakowicz WJ, D’Sa C, Roth KA (2002a) Ethanol-induced caspase-3 activation in the in vivo developing mouse brain. Neurobiol Dis 9:205–219CrossRefGoogle Scholar
  19. Olney JW, Tenkova T, Dikranian K, Qin YQ, Labruyere J, Ikonomidou C (2002b) Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain. Brain Res Dev Brain Res 133:115–126CrossRefGoogle Scholar
  20. Olney JW, Ishimaru MJ, Bittigau P, Ikonomidou C (2000) Ethanol-induced apoptotic neurodegeneration in the developing brain. Apoptosis 5:515–521PubMedCrossRefGoogle Scholar
  21. Oomman S, Finckbone V, Dertien J, Attridge J, Henne W, Medina M, Mansouri B, Singh H, Strahlendorf H, Strahlendorf J (2004) Active caspase-3 expression during postnatal development of rat cerebellum is not systematically or consistently associated with apoptosis. J Comp Neurol 476:154–173PubMedCrossRefGoogle Scholar
  22. Purring-Koch C, McLendon G (2000) Cytochrome c binding to Apaf-1: the effects of dATP and ionic strength Proc Natl Acad Sci USA 97:11928–11931PubMedCrossRefGoogle Scholar
  23. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108 Suppl 3:511–533CrossRefGoogle Scholar
  24. Rosado JA, Lopez JJ, Gomez-Arteta E, Redondo PC, Salido GM, Pariente JA (2006) Early caspase-3 activation independent of apoptosis is required for cellular function. J Cell Physiol 209: 142–152PubMedCrossRefGoogle Scholar
  25. Smolen AJ (1990) Image analytic techniques for quantification of immunohistochemical staining in the nervous system Methods Neurosci 3:208–229Google Scholar
  26. Spadoni AD, McGee CL, Fryer SL, Riley EP (2007) Neuroimaging and fetal alcohol spectrum disorders Neurosci Biobehav Rev 31:239–245PubMedCrossRefGoogle Scholar
  27. Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer S W Fujio Y, Azuma J (2004) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome Am J Physiol Cell Physiol 287:C949–C953PubMedCrossRefGoogle Scholar
  28. Taranukhin AG, Taranukhina EY, Saransaari P, Djatchkova IM, Pelto-Huikko M, Oja SS (2007) Taurine reduces caspase-8 and caspase-9 expression induced by ischemia in the mouse hypothalamic nuclei. Amino Acids DOI 101007/s00726-006-0405-zGoogle Scholar
  29. Wijsman JH, Jonker RR, Keijzer R, van de Velde CJH, Cornelisse CJ, van Dierendonck JH (1993) A new method to detect apoptosis in paraffin sections: ISEL of fragmented DNA. J Histochem Cytochem 41:7–12PubMedGoogle Scholar
  30. Wood KA, Dipasquale B, Youle RJ (1993) In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron 11:621–632PubMedCrossRefGoogle Scholar
  31. Young C, Klocke BJ, Tenkova T, Choi J, Labruyere J, Qin YQ, Holtzman DM, Roth KA, Olney JW (2003) Ethanol-induced neuronal apoptosis in vivo requires BAX in the develsoping mouse brain. Cell Death Differ 10:1148–1155PubMedCrossRefGoogle Scholar
  32. Young C, Roth KA, Klocke BJ, West T, Holtzman DM, Labruyere J, Qin YQ, Dikranian K, Olney JW (2005) Role of caspase-3 in ethanol-induced developmental neurodegeneration. Neurobiol Dis 20:608–614PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrey G. Taranukhin
    • 1
  • Elena Y. Taranukhina
  • Irina M. Djatchkova
  • Pirjo Saransaari
  • Markku Pelto-Huikko
  • Simo S. Oja
  1. 1.Brain Research CenterUniversity of Tampere Medical SchoolFinland

Personalised recommendations